OFFSET
1,1
LINKS
Reinhard Zumkeller, Rows n = 1..1000 of triangle, flattened
Eric Weisstein's World of Mathematics, Goldbach Partition
Wikipedia, Goldbach's conjecture
EXAMPLE
Let p(n) = A065091(n) = prime(n+1):
. n | p(n) | T(n,*)
. ----+------+----------------- ------------------------------------------
. 1 | 3 | [3] 3
. 2 | 5 | [4,5] (5+3)/2,5
. 3 | 7 | [6,7] (7+5)/2,7
. 4 | 11 | [8,9,11] (11+5)/2,(11+7)/2,11
. 5 | 13 | [10,12,13] (13+7)/2,(13+11)/2,13
. 6 | 17 | [14,15,17] (17+11)/2,(17+13)/2,17
. 7 | 19 | [16,18,19] (19+13)/2,(19+17)/2,19
. 8 | 23 | [20,21,23] (23+17)/2,(23+19)/2,23
. 9 | 29 | [24,26,29] (29+19)/2,(29+17)/2,29
. 10 | 31 | [22,25,27,30,31] (31+13)/2,(31+19)/2,(31+23)/2,(31+29)/2,31
. 11 | 37 | [28,33,34,37] (37+19)/2,(37+29)/2,(37+31)/2,37
. 12 | 41 | [32,35,36,39,41] (41+23)/2,(41+29)/2,(41+31)/2,(41+37)/2,41
PROG
(Haskell)
import Data.List.Ordered (union); import Data.List ((\\))
a260580 n k = a260580_tabf !! (n-1) !! (k-1)
a260580_row n = a260580_tabf !! (n-1)
a260580_tabf = zipWith (\\) (tail zss) zss where
zss = scanl union [] a065305_tabl
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Aug 11 2015
STATUS
approved