[go: up one dir, main page]

login
A260419
Square array T(n,m) read by antidiagonals, T(n,m) is the number of (m,n)-parking functions.
2
1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 5, 16, 11, 1, 1, 5, 16, 27, 16, 1, 1, 7, 25, 125, 81, 42, 1, 1, 7, 49, 125, 256, 378, 64, 1, 1, 9, 49, 243, 1296, 1184, 729, 163, 1, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 1, 11, 100, 729, 2401, 16807, 15625, 27213, 9529, 638, 1
OFFSET
1,5
COMMENTS
T(n,2) appears to be A027306(n).
LINKS
Jean-Christophe Aval, François Bergeron, Interlaced rectangular parking functions, arXiv:1503.03991 [math.CO], 2015.
FORMULA
T(n,m) = m^(n-1), if m and n are coprime (see Lemma in Aval & Bergeron link).
EXAMPLE
Table starts (see Table 1 in Aval & Bergeron link):
n/m 1 2 3 4 5
------------------------------
1 |1, 1, 1, 1, 1, ...
2 |1, 3, 3, 5, 5, ...
3 |1, 4, 16, 16, 25, ...
4 |1, 11, 27, 125, 125, ...
5 |1, 16, 81, 256, 1296, ...
6 |...
CROSSREFS
Cf. A071201.
Sequence in context: A125127 A051120 A114476 * A117184 A035690 A124794
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Jul 25 2015
EXTENSIONS
More terms from Alois P. Heinz, Nov 30 2015
STATUS
approved