OFFSET
0
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (0,1,0,-1).
FORMULA
Euler transform of length 12 sequence [ 0, 1, 1, -1, 0, -2, 0, 0, 0, 0, 0, 1].
G.f.: (1 + x^3) / (1 - x^2 + x^4).
G.f.: 1 / (1 - x^2 / (1 - x / (1 + 2*x / ( 1 - x / (1 - x / (1 + x)))))).
a(n) = (-1)^n * a(n+3) = -a(n+6) = a(5-n) = a(n+2) - a(n+4) for all n in Z.
EXAMPLE
G.f. = 1 + x^2 + x^3 + x^5 - x^6 - x^8 - x^9 - x^11 + x^12 + x^14 + x^15 + ...
MATHEMATICA
a[ n_] := KroneckerSymbol[ -6, 2 n + 1];
LinearRecurrence[{0, 1, 0, -1}, {1, 0, 1, 1}, 120] (* Harvey P. Dale, Jun 24 2018 *)
PROG
(PARI) {a(n) = kronecker( -6, 2*n + 1)};
(PARI) {a(n) = (-1)^(n\6) * [ 1, 0, 1][n%3 + 1]};
(PARI) {a(n) = if( n<3, n=5-n); polcoeff( (1 + x^3) / (1 - x^2 + x^4) + x * O(x^n), n)};
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Jul 18 2015
STATUS
approved