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ABSTRACT

Using Tutte’s definition of internal activity, the author determines the average
value of this quantity for a tree in a rooted map with n edges. The number of rooted
maps with # edges and a distinguished spanning forest with two components is also
determined.

1. INTRODUCTION

In his paper, <A Contribution to the Theory of Chromatic Polynomials”
[4], Tutte makes the following definitions:

Let G be a finite connected graph with at least one edge. Enumerate
the edges of G as A;, Ay ey Am - Consider any spanning tree T of G.
Suppose 4; is an edge of T. Then T, (the graph obtained by removing
the edge 4, from T) has two components, C and D say. Each has one end
of A; as a vertex. We say 4; is internally active in T if each edge A, of G

other than 4, which has one end in C and one end in D-satisfies & < j. -

Edges of G with one end in C and one end in D are said to be edges of the
bond determined by T and 4;. Now suppose A4 is not an edge of T.
Denote its ends by C and D. There is a unique simple path in T from
a to b. We say A, is externally active in 7T if each edge A, in this path
satisfies k < j. Edges in this path together with 4; are said to be edges of
the polygon determined by 7 and 4, . :

The internal activity of a tree in a map whose edges are ordered is the
number of edges which are internally active in that tree under that ordering.
Let us denote the activity of the spanning tree T under the ordering p by
A(T, p). Let 7, denote the set of spanning trees in the map Al It is an
interesting property of activity that for any map M,

AM) = Y, AT, p) (1.1)
TeJ pp
is independent of the ordering p.
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104 MULLIN '

A rtooted map is a connected plane graph and its embedding in the
plane, in which an edge is distinguished as root edge. This edge is oriented,

and left and right sides are specified for it. The negative end of the root

edge is referred to as the root vertex; the face on the left of the root edge
is called the root face. If a map has no edges, it is the vertex map. In this
case the vertex is root vertex, and the bounding face is root face, despite
the lack of a root edge.

In this paper we determine the average value of A(M) over the class of
all rooted maps of n edges. In the process we determine the number of
twin-tree-rooted maps with n edges, where a twin-tree-rooted map is
a rooted map in which a spanning forest of two components is distinguished
as root forest. The root forest may or may not contain the root edge of
the map. :

Let us further remark that, since the set of rooted maps with n edges is
self-dual, our results on bonds and internal activity are also valid for the
dual concepts of polygons and external activity.

2. LABELING OF ROOTED MAPS

Let us denote the class of all rooted plane maps with n edges by M(n).
Let us fix an ordering A, , A, ,..., 4, of the edges, arbitrarily in each map.
Each map, and therefore each tree-rooted map, now appears as a labeled
map. (A tree-rooted map is a rooted map in which a spanning tree is
distinguished as root tree. The root tree may or may not include the root
edge.) Each permutation of the index set {4, , 4, ,..., 4,} may be viewed
as a relabeling of each map.

3. AVERAGE INTERNAL ACTIVITY

We define the average internal activity 7'(n) of a spanning tree in a
rooted map with n edges by

Ty Y 1 Tul= Y AM), @.1)

MeM(n) MeMin)

where | 7, | is the cardinal number of 7}, . Let us denote the sum on the
left of (3.1) by F(n), that is,

Fmy= 5 |Iml

MeM(n)

C
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Then it is shown in (3) that

2n)! (2n + 2)!
Fo) = n s Do+ 21 (3.2)
Since A(M) is independent of the particular ordering on M, we may
assume we are dealing with the orderings assigned to the maps in Section 2.
Let p be the ordering of the maps in T(n), the class of tree-rooted maps on
n edges, induced by the labeling in Section 2. Let U(n) be the set of
distinguished (root) trees in 7(n). Then

Y AM)= Y AT, p). (3.3)

MeM(n) TeU(n)

Let B be an edge of the tree T. Then let A(T, p, B) = 1 or 0 according
as B is or is not internally active in the tree T under the ordering p. Then

Y, AT,p)= Y Y XT,p,B), (3.4)
TeU(n) TeU(n) BeT
that is,
T Fy = Y. Y. NT.p, B). (3:5)
TeU(n) BeT

Let us denote the set of permutations of (4, , 4, ..., 4,) by P. Then

nTmyFn)y =Y Y Y XT,p, B) (3.6)

pep TeU(n) BeT

Let us define a doubly rooted tree map as a tree-rooted map in which an
edge of the root tree is distinguished as the secondary root edge. (If the
distinguished tree of a tree-rooted map is a vertex tree, no corresponding
doubly rooted tree map will exist). It may happen that the original root
edge is also the secondary root edge.

Let B(n) be the set of secondary root edges in the class of all doubly
rooted tree maps with n edges. Then

nTmyFm) = Y Y XT,p, B), (3.7)

BeB(n) pePg

where Py is the set of all permutations of the ordering of the edges of the
doubly rooted tree maps whose secondary root edge is B and T is the
root tree of the map containing B.

Let B(n, k) be the set of secondary root edges of the class of doubly
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rooted tree maps in which the bond B (determined by some 7" and B)
contains k + 1 edges. Then

S Y ALeB =Y Y Y ATpB (3

BeB(n) pePg k=0 BeB(n,k) pePg

Suppose B € B(n, k). Then

!
EIMﬂmB%:—%T- (3.9)
PEPg

Indeed, let us consider P(n, , n, ,..., ny.,), the class of orderings in which
the edges of the bond B have the labels An, s Ay s A,,M . In k! of these
orderings, B is labeled with the largest element. Thus

¥ XT, p, B) = k!

PEP(N  Novenrs Tyy)

But there are (,) n-k-1! such classes of orderings; this establishes (3.9).
Thus

_ n—1 1

T(n) F(n) = o 4 3.10

(n) F(n) k‘éo BEB(Z;H . (3.10)
that is,

_ n—1 1

T(n) F(n) = —— | B(n, k)|, 3.11

() Fr) = 3. 7 | B0 )| (3.11)

where | B(n, k) | is the cardinal number of B(n, k).

For the convenience of the reader, Figures 5, 6, 7, and 8 exhibit the
maps of M(n), T(n), B(n), and H(n, k) (yet to be defined) for n = 1 and
2,and k =1, 2.

4. TREE-ROOTED MAPS AND HAMILTONIAN TRIVALENT MAPS

Let us note that any tree-rooted map M can be made correspond to
a trivalent map M* with a distinguished Hamiltonian polygon, one of
whose residual domains is distinguished as root domain. This correspond-
ence can be produced as follows:

A simple closed curve C is drawn around the distinguished tree 7" of M
in such a fashion that it meets no edge or vertex of T and meets every

other edge exactly twice. Through every edge D of T an arc Xp is drawn

such that D and X have exactly one point in common, Xp has its ends
in C, and Xp meets no other vertex or edge of M.
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Let us denote by K the residual domain of C which does not contain 7.
All edges of M which are not edges of 7 will be called the co-tree edges
of M relative to T, or merely the co-tree or distinguished co-tree of M
Every edge D of the co-tree T of T contains an arc Yp which crosses K.
Then ‘
H=U X U ¥»

DeT DeT

defines a trivalent map M* in which C is a Hamiltonian polygon and K
is root domain.

Let K; be the residual domain of C which contains 7. Every face of K,
in M* corresponds in an obvious manner to a vertex of M; every edge
crossing K, in M* corresponds to an edge 7 in M.

Let us assume that M is a rooted map. We can induce a rooting on
M* as follows:

If the root edge E of M is a member of the co-tree T of M, we use the
residual arc Yz in M* with the orientation and left and right sides induced
by the orientation and left and right sides of E. If E is the root tree T
of M, the corresponding edge Xg of M is oriented such that Xz crosses £
from left to right and is such that the face corresponding to the positive
end of E is on the left of Xz . The oriented edge Xz or Y is then taken as
the root edge of M*. This rooted map with its distinguished domain will
be called a Hamiltonian-rooted trivalent map for purposes of this paper.

Let us note that any other edge X, or Y, of M* may be oriented in
terms of the orientation on the root edge of M* by the following rule:

Let x and y be, respectively, the negative and positive ends of the root
edge E of M*. The vertices x and y divide the curve C into two arcs R
and S, the arc R being chosen such that the closure of R U E bounds the
region on the left of E. Suppose that F is any other edge of

F= UXD U~YD9

DeT DeT

then if F has one end in R and one end in S, we direct F from S to R.
If, however, both ends of F lie on the same residual arc, Z, where Z is
either R or S, then the ends of F also divide C into two arcs, one of which,
W, contains x and y. Then the closure of (Z N W)U E U Fis a polygon
through E and F. We orient every edge of this consistently with the
orientation on E. This provides an orientation for F. Left and right sides
are assigned to F consistently with the assignment of left and right sides
to E. The assignment of the secondary orientation above has the following
property: Suppose any edge F with the orientation induced by E is taken
as root edge of map M*. Then the secondary orientation induced on E
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relative to the root F is precisely that as was on E originally. This
observation is useful in the following section.

FIGURE 1

5. DOUBLY ROOTED HAMILTONIAN TRIVALENT MAPS AND
) DousLy RooTep TREE MAPS

In view of the foregoing analysis we note that the number of doubly
rooted tree maps with n edges is # times the number of tree-rooted maps
in which the root edge is contained in the spanning tree. Indeed, let M
be a doubly rooted tree map. Under the construction of Section 4, M
becomes a rooted Hamiltonian-rooted trivalent map M* in which one
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of the edges X, corresponding to the secondary root edge D' in T of M,
is distinguished as secondary root edge of M*. Such a map will be called
a doubly rooted Hamiltonian-rooted trivalent map. If Xp’ is already the.
primary root of M* itis already oriented. Otherwisc Xpr can be secondarily
oriented with respect to the orientation on the root edge of M*. The edge
X, can then be taken as root edge for M*. Each such map M* can be
restored to n doubly rooted Hamiltonian maps by choosing any edge E
of M* as primary root for A7* and using the orientation on £ induced by
the orientation on X, to give the rooting orientation on the primary
root. This established the fact that G(n) = nH(n), where G(n) is the
number of doubly rooted tree maps with n edges and H(n) is the number
of tree-rooted maps in which the root edge is contained in the root tree.

6. THe NumBer oF DousLy ROOTED TREE MAPS

To compute T(n), the average internal activity of a tree in a map with
edges, we need determine | B(n, k) |, or equivalently the number of doubly
rooted tree maps with secondary root B in which the bond determined
by B and T, the root tree, contains k + 1 edges. By the construction of
Section 5, this is 7 times the number of tree-rooted maps on n edges in
which the root edge B belongs to the root tree T and the bond determined
by B and T has k + 1 edges. Let us denote the class of such maps as
E(n, k). | E(n, k)| is most readily determined in terms of Hamiltonian-
rooted trivalent maps. Let us denote the class of Hamiltonian-rooted
maps corresponding to E(n, k) by D(n, k). Suppose M* belongs to D(n, k).
Let B be the root edge of M*. Since the root edge of M belongs to the
root tree of 7, B does not cross the distinguished domain K of M*.
Let x and y be, respectively, the negative and positive ends of B. As
before, x and y divide the distinguished polygon C into two open arcs,
R and S, R being such that the region bounded by the closure of RU B
lies on the left of B. Since B crosses K, , the non-root domain of AM*,
no edge crossing D, has one end in R and the other in S. There are precisely
k edges crossing K with one end in R and one end in S; these edges of
M* correspond to the non-root edges of the bond determined by B and
Tin M. These edges of M* form the set H. An arc F can be drawn across
K from x to y such that F meets every edge of H in exactly one point,
and meets no other edge of M* except at x and y (see Fig. 2).

The configuration in Figure 2 may be described as follows: Let C be

_a simple closed curve on a 2-sphere and let K be one of its residual domains.
Let P, , P ,..., Py, be 2n distinct points chosen on C. By a cross-connection

of these points in K we understand a set of n non-intersecting open arcs
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in K joining the 2n points P; in pairs. Further,let x and y be two points
of C distinct from the points P; and each other. Points x and y separate
C into two distinct arcs R and S. Let us suppose that precisely &k of the

R

BN

FIGURE 2

cross-connecting arcs of K have one end in R and one end in S. Let us
denote n — k by / and refer to the above configuration as a (k, /)-dissection.
The arc F joining x and y across K is added merely for convenience in the
following enumerative argument and is not an essential part of the

R

F

FIGURE 3
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configuration. The (k, /) dissection of C induces a cross-connection of K’,
the interior of R U F, which is shown in Figure 3. It is characterized by
the fact that its boundary contains a distinguished arc (the arc F) in which
there are exactly k end-points of cross-connecting arcs, and no two of
these end-points are joined across K'. We will call such a figure a (k, /)
configuration. Clearly the total number of cross-connecting edges in
a (k,!) configuration is k + /. Figure 4 illustrates the fact that each

R

el BN

FIGURE 4

(k, I) configuration can be considered as an ordered set of (0, /;)-con-
figuration { = 1, 2,..., k + I, such that /; + I, + - 4+ Iy, = [ It was
shown by Tutte [6, p. 412] that there are 2/!//!(/ 4 1)! topologically
distinct (0, /) configurations. Hence it is shown in [2, p. 142] that if A4,
is the number of topologically distinct (k, /) configurations,

(k 4 D)2+ k)!

A==
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M (n)

S0
o0

n=2

FIGURE 5

Returning to M*, we see that the closure of BU F is a simple closed
curve which separates the map M* into two residual domains, P
and Q, P being that which contains the arc R. R divides P into two
domains, one of which, bounded by the closure R U F, is a (k, s) con-
figuration and the other, bounded by the closure of RU B, is an (0, f)
configuration for some values of s and ¢. The arc B does not contain any
end-point of any edge which crosses P, and F is the distinguished arc of
the (k, s) configuration above. Such a configuration will be called a
k-half-map. Clearly any map of D(n, k) corresponds to a pair of k-half-
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T (n)

* Root tree

FIGURE 6

maps. Let H be any k-half-map in which there are precisely k + u edges
which have at least one end in the open arc R. Let us enumerate such
configurations by the following method: Let G be a simple closed curve
in the closed plane and let J be one of its residual domains. Let x and
y be two distinct points of G and let R be a simple arc crossing J with
ends x and y and directed from x to y. Distinguish the left and right sides
of R. Let the residual arcs of the points x and y in G be F and B, F being
such that the region bounded by the closure of F U R lies to the right of R.
Then 2u + k points are distinguished in the interior of R, and k points
are distinguished in the interior of F. Then 2t points are chosen on R
and joined across the region of J on the left of R to form a (0, ¢) con-
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figuration. The remaining points are joined across the region on the
right of R to yield a (k, 5) configuration where s = u — . Thus there are

utky @) Qu—2t+ Rk +1)
z( 2t )t'(t + D —0)u—t+k+ D! (6.1)

=0

such k-half maps. This may be written as

(k + D2u + K)! Z (u+ k+2)!
ul (u+k +2)! t'(u—t)'(t+1)'(u—t+k+1)‘

SR e DA AR

(6.2)

But (%) is the coefficient of x* in the expansion of (1 + x)* and ()|
is the coefficient of x“+*+1-t in the expansion of (I 4 x)**+**2. Thus

(u)( u+k+2 ) Qu+ k + 2)! 6.3)

ut+k+1—1t (u+k+1)‘(u+1)"

the coefficient of x**+#+1 in the expansion of (1 4 x)* (1 4 x)****+2 Thus
the formula of (6.1) may be written as

(k + DQu + k) Qu + k + 2)! (6.4)
WL k+ 2D U+ k+ DI+ 1)!

which we denote by b, , . By assembling pairs of k-half maps with 2u + k
and 2o -+ k points on the directed arcs corresponding to R in the preceding
construction, we obtain trivalent rooted maps in which « 4+ v 4+ k non-
root edges cross the residual domains of the distinguished polygons.
These correspond to a tree-rooted map with u 4o+ k -+ 1 edges,
counting the root edge. Thus

M:

t=0

n—k-1

l E(n’ k)l = Z bk.ubk.n—k—l—-u . (65)

u=0
But | B(n, k)| = n| E(n, k) |. Thus by (3.11),

Conainltk (e DQu+ R Qut k + 2)!
FmTe = 3 Y Tt k+D @+ kTt D@t Dl

k=0 u=0

2n—2u—k—2)!(2n —2u — k)!
(n—k—l—u)'(n+1—u)'(n—u)'(n—k—u)'

whichi is an explicit formula to T(n).
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7. CONJUGATE MEMBERS OF B(n, k)

A rooted map M is said to be twin-tree-rooted if a spanning forest with
two connected components is distinguished as root forest of M. Let M
beatwin-tree-rooted map with nedges whose spanningforest hascomponents
T, and T,. Let us assume that there are k + 1 edges of M which have
one end in T; and one end in T, This sct of edges is called the bond
determined by T, and T, or the root bond of M.

B (n, k)

. s Secondary  root

FIGURE 7

Let E be an edge of K, the bond determined by 7, and T,. If E is
distinguished and adjoined to 7; and T,, the result is a double-rooted
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H(n, k)

k=1

.l s Spanning

k=2 et forest
FIGURE 8

tree map in which E is the secondary root edge. Thus each such twin-tree-
rooted map generates k + 1 double-rooted tree maps, and hence k + 1
members of B(n, k). These members of B(n, k) are called conjugate edges,
and B(n, k) is thus partitioned into equivalence classes of conjugate
edges, each of which contains k -+ 1 edges. The number of such classes is
| H(n, k + 1) |, where H(n, k + 1) is the set of twin-tree-rooted maps
with n edges, whose root bond contains k + 1 edges. Thus

| Bn, k)| = (k + 1) | H(n, k & D) |, (7.1)
and, by (3.11),
F(n) T(n) = nil Hn k+ 1) = nz H(n, k). : ‘ (7.‘2)

e
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But the right side of (7.2) is the number of twin-tree-rooted maps with
n edges. Let A, be the number of such twin-tree-rooted maps. That is,

T(r) — n! [(n + D¥n + 2)!

T e (7.3)

8. AsymproTIC ESTIMATES

We may obtain asymptotic estimates of T(n) and h, from the following
considerations: By (3.11)

TG FR) = 3 141 BB < Y B0, 0| = B@)I. @D

But | B(n) | may be determined as follows. Recall that 7(n) denotes the
set of tree-rooted maps on #n edges. For M € T(n), let e(M) be the number
of edges in the root tree of M. Every M in T(n) can produce e(M) members
of B(n). Thus

[Bm)| = ) e(M). (8.2)

‘ MEeT(n)
Let us pair each map M with its dual M. Then, since e(M) + e(M) = n,

21Bm) = ) [eM)+eM))=n ) 1=nFn). (83)

MeT(n) MeT(n)

That is,
| | B | = 5 Fln, (8:4)
and by (8.1)
T(n) < % . (8.5)

On the other hand, consider the terms of (6.6) corresponding to k = 0,

u=0and k = 0, u = n — |. These terms are equal, let us denote them
by C(n). Then forn > 2

Cln) _ (n+ 2)(n+ 1)(n) n
T(n) > 2 Fy 2+ )@ni—1 ~ 8

(8.6)

We now show that 7(n)/n approaches a limit as n approaches infinity.
To this end, we define

bk.u ’ bk.n—k—l—u
~A(ny k,u) = G+ DEFm 8.7
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where b, , is as defined in Section 6. Then define S(n) by
n—1 n—k—1
S = T(n)/n =3y Y Ak u). (8.8)

k=0 u=0

Since
A(n, k,u) = A(n, kyn —k —1 — u),

we may write

[ n—k—1 ]

S(n) = 2"5 Y A k) —”f 8(n, k), (8.9)

k=0 u=0 k=0

where [x] indicates the greatest integer contained in x, and, 8 (n, k) = 0
if n = k mod 2 and

0, k) = 4 [k, 2 =0,

otherwise. Let us note that we may also write

n—2 [_"__k—l] n—1

z z A(n, k, 1) -+ Z 8(n, k). (8.10)

u=0
Let us define Q(n) and R(n) by

[n k—l]
o) =2 Z z A(n, k, u), (8.11)

n—-2 [ n—k—z ]

Rn)y=2Y% Z A(n, k, u).

k=0 u=0
Now for 0 < k < n— 1and

' 0<u<(—————n—§—l),

A+ Lk 1n+32m—w+l—k n+22n—w—1—k
A(m,k,u)  — 42n+3 n—u-+42 2n + 1 n—u-+ 1

2(n—u)—k+2_2(n—u)—k.

n—u-t+k+1 n—u-+k ®.12)
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But

n+3 _2(n—u)+1—k<n—|-3 2n—u)+ 1
2n + 3 n—u-+2 S2m+3 (n—u—+2

=2n(n—u)—}—7n—6u+3
2n(n —u)+ Tn —3u+ 6

< 1. (8.13)

Similarly,

n+2 2n—u)—1—k
2n + 1 n—u—=k

< L

Also

2n —u) —k + 2
n—u+k+1

< 2,

Thus A(n + 1, k, u) < A(n, k, u), and hence
R(n + 1) < Q(n). (8.14)

But

So+ 1) = R+ 1) + Y, 61+ 1,K)

k=0

<Qn+ Y 0n+ 1,k)
k=0

n—1 n
= Sut Y 000, k) + 3 000 + 1, k). (8.15)
k=0 k=0

Arguments similar to those of statements (8.7) to (8.14) show that

0(n, k) < 6(n, 0) if n =1 mod 2,
0(n, k) < 6(n, 1) if n = 0mod 2.
But by Stirling’s formula,
0(n, 0) = 0(n=%) n = 1 mod 2,
O(n, 1) = 0(n—3) n =.0mod 2,

582/3/2-2
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Hence

i O(n 4+ 1, k) + i 0(n, k) = 0(n~?),

k=0 k=0

Spi1 < S 4 0(n73). (8.16)

This motivates the following lemma, which is, no doubt, well known.
Since the author can supply no reference, a proof is included.

CONVERGENCE LEMMA. Let S = (S;,S;,...) be a sequence of real
numbers such that

Sn+1 < Sn + An s

where A, is a sequence of real numbers such that Y= | Anl is convergent.
If {S,} is bounded below, then {S,} is convergent.

Proor: Given € > 0, there exists n, such that

5 | Anl <35

n=mn,

ifg = glb. Uz, {Sa), g is finite since S is bounded below, and there

n=ng,

exists n, > np such that 0 < 8, —g < ¢/2. Now if n > ny

g8, < Spo1+ Anaa < Spe+ Apg + Any

n—1
<Su+ ¥ Al <g+5+5=28+¢

k=n,

Thusif m > ny,n > ny | S, —Sa|l <6 and {S,} is convergent.

Thus by (8.16) and (8.6), T(n)/n is convergent. Let us denote the limit
of this sequernce by «. Thus 7(n) ~ an, and since h, = T(n) F(n), applying
Stirling’s formula to F(n),

0‘2:;ln+2

hy, ~
" h?

‘Tables I and II exhibit the numbers of maps in many of the afore-
mentioned classes for small values of n.
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TABLE 1
[(B(n, k)| | H(n, k)|

nlk 0 1 2 3 nik 1 2 3 4

1 1 1 1

2 8 2 2 8 |

3 72 30 3 3 72 15 1

4 720 - 380 72 4 4 720 190 24 1

TABLE IT
n | M(n)| | T(m) | B(m) hn T(n)
0 1 1 0 0 0
1 2 2 1 1 5
2 9 10 10 9 9
3 54 70 105 88 1.26
4 378 588 1196 935 1.59

| ] ]
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