[go: up one dir, main page]

login
A259844
Number A(n,k) of n X n upper triangular matrices (m_{i,j}) of nonnegative integers with k = Sum_{j=h..n} m_{h,j} - Sum_{i=1..h-1} m_{i,h} for all h in {1,...,n}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
4
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 7, 1, 1, 1, 4, 22, 40, 1, 1, 1, 5, 50, 351, 357, 1, 1, 1, 6, 95, 1686, 11275, 4820, 1, 1, 1, 7, 161, 5796, 138740, 689146, 96030, 1, 1, 1, 8, 252, 16072, 1010385, 25876312, 76718466, 2766572, 1
OFFSET
0,9
COMMENTS
A(n,k) counts generalized Tesler matrices. For the definition of Tesler matrices see A008608.
LINKS
EXAMPLE
A(2,2) = 3: [1,1; 0,3], [2,0; 0,2], [0,2; 0,4].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 7, 22, 50, 95, 161, ...
1, 40, 351, 1686, 5796, 16072, ...
1, 357, 11275, 138740, 1010385, 5244723, ...
MAPLE
b:= proc(n, i, l, k) option remember; (m-> `if`(m=0, 1,
`if`(i=0, b(l[1]+k, m-1, subsop(1=NULL, l), k), add(
b(n-j, i-1, subsop(i=l[i]+j, l), k), j=0..n))))(nops(l))
end:
A:= (n, k)-> b(k, n-1, [0$(n-1)], k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[n_, i_, l_List, k_] := b[n, i, l, k] = Function[{m}, If[m == 0, 1, If[i == 0, b[l[[1]] + k, m-1, ReplacePart[l, 1 -> Sequence[]], k], Sum[b[n-j, i-1, ReplacePart[l, i -> l[[i]]+j], k], {j, 0, n}]]]][Length[l]]; A[n_, k_] := b[k, n-1, Array[0&, n-1], k]; A[0, _] = A[_, 0] = 1; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
CROSSREFS
Columns k=0-2 give: A000012, A008608, A259919.
Rows n=0+1,2-3 give: A000012, A000027(k+1), A002412(k+1).
Sequence in context: A257493 A296526 A362377 * A112707 A196017 A343555
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 06 2015
STATUS
approved