%I #13 Aug 18 2015 12:57:29
%S 0,1,2,3,4,5,7,154,178,203,5001,7409,315721,567434,1032507,46823602,
%T 56939099,84572293,119204743,1420737297,1830945641,2115191225,
%U 3286138051,3292861699,4061216947,8094406311,43253138565,80375377033,88574916241,108218625313,116606986537,116755331881,166787896538,186431605610,318743407660,396619220597,1756866976011,4920262093249,11760498311914,15804478291811,15813860880803,24722285628901,33004205249575,55584258482529,371039856325905,401205063672537,516268720555889
%N Palindromic numbers in bases 6 and 8 written in base 10.
%H Giovanni Resta, <a href="/A259384/b259384.txt">Table of n, a(n) for n = 1..74</a>
%H <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>
%F Intersection of A029953 and A029803.
%e 178 is in the sequence because 178_10 = 262_8 = 454_6.
%t (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 6], AppendTo[lst, pp]; Print[pp]]; k++]; lst
%t b1=6; b2=8; lst={}; Do[d1=IntegerDigits[n,b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* _Vincenzo Librandi_, Jul 17 2015 *)
%Y Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
%K nonn,base
%O 1,3
%A Eric A. Schmidt and _Robert G. Wilson v_, Jul 16 2015