[go: up one dir, main page]

login
A259346
If n = 2^k then a(n) = 3^k, otherwise a(n) = 0.
2
1, 3, 0, 9, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 729, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,2
LINKS
Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & Graphics, Vol. 13, No. 1 (1989), pp. 59-62. See Eq. (4a).
Akhlesh Lakhtakia and Russell Messier, Self-similar sequences and chaos from Gauss sums, Computers & Graphics, Vol. 13, No. 1 (1989), pp. 59-62 (Annotated scanned copy).
FORMULA
Completely multiplicative with a(2) = 3, a(p) = 0 for odd prime p. - Andrew Howroyd, Jul 27 2018
Dirichlet g.f.: 2^s/(2^s-3). - Amiram Eldar, Sep 14 2023
MATHEMATICA
a[n_] := With[{k = IntegerExponent[n, 2]}, If[n == 2^k, 3^k, 0]];
Array[a, 85] (* Jean-François Alcover, Aug 27 2019 *)
PROG
(PARI) a(n)={my(e=valuation(n, 2)); if(n == 2^e, 3^e, 0)} \\ Andrew Howroyd, Jul 27 2018
CROSSREFS
Sequence in context: A303633 A167004 A287632 * A239798 A019827 A329284
KEYWORD
nonn,easy,mult
AUTHOR
N. J. A. Sloane, Jun 27 2015
EXTENSIONS
More terms from Jon E. Schoenfield, Jun 28 2015
STATUS
approved