[go: up one dir, main page]

login
A258441
9-gonal numbers (A001106) that are the sum of two consecutive 9-gonal numbers.
4
24486, 959892121, 37629690894906, 1475159141502204841, 57829188627539743273926, 2267019851101653874322234161, 88871712145057846553640480297546, 3483948857243537849494160234302156081, 136577763012789458630812222951472642381766
OFFSET
1,1
FORMULA
a(n) = 39203*a(n-1) - 39203*a(n-2) + a(n-3).
G.f.: -x*(x^2-32537*x+24486) / ((x-1)*(x^2-39202*x+1)).
a(n) = (46+(89-36*sqrt(2))*(19601+13860*sqrt(2))^(-n)+(89+36*sqrt(2))*(19601+13860*sqrt(2))^n)/224. - Colin Barker, Mar 07 2016
EXAMPLE
24486 is in the sequence because A001106(84) = 24486 = 12036 + 12450 = A001106(59) + A001106(60), where A001106(k) is the k-th 9-gonal number.
PROG
(PARI) Vec(-x*(x^2-32537*x+24486)/((x-1)*(x^2-39202*x+1)) + O(x^20))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 30 2015
STATUS
approved