[go: up one dir, main page]

login
A257944
Lexicographically earliest sequence of positive integers such that the terms and their absolute first differences are all distinct and no term is the sum of two distinct terms.
5
1, 3, 7, 12, 18, 26, 16, 31, 20, 37, 50, 22, 41, 64, 35, 56, 83, 39, 69, 45, 54, 79, 111, 58, 92, 130, 60, 96, 136, 73, 115, 163, 75, 121, 168, 77, 134, 193, 98, 149, 182, 102, 157, 206, 117, 178, 244, 138, 210, 277, 140, 214, 282, 153, 229, 307, 155, 220, 263
OFFSET
1,2
COMMENTS
The sequence of absolute first differences begins: 2, 4, 5, 6, 8, 10, 15, 11, 17, 13, 28, 19, 23, 29, 21, 27, 44, 30, 24, 9, 25, 32, 53, ... .
LINKS
E. Angelini et al., 0-additive and first differences and follow-up messages on the SeqFan list, May 13 2015
MAPLE
s:= proc() false end: b:= proc() false end:
a:= proc(n) option remember; local i, k, ok;
if n=1 then b(1):= true; 1
else for k do if b(k) or s(k) or (t-> b(t) or t=k)(
abs(a(n-1)-k)) then next fi; ok:=true;
for i to n-1 while ok do if b(k+a(i))
then ok:=false fi od; if ok then break fi
od;
for i to n-1 do s(a(i)+k):= true od;
b(k), b(abs(a(n-1)-k)):= true$2; k
fi
end:
seq(a(n), n=1..101);
MATHEMATICA
s[_] = False; b[_] = False;
a[n_] := a[n] = Module[{i, k, ok}, If[n == 1, b[1] = True; 1,
For[k = 1, True, k++, If[b[k] || s[k] || Function[t, b[t] ||
t == k][Abs[a[n-1] - k]], Continue[]]; ok = True;
For[i = 1, i <= n-1 && ok, i++, If[b[k + a[i]],
ok = False]]; If[ok, Break[]]];
For[i = 1, i <= n-1, i++, s[a[i] + k] = True];
{b[k], b[Abs[a[n-1] - k]]} = {True, True}; k]];
Table[a[n], {n, 1, 101}] (* Jean-François Alcover, Jul 16 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,look,changed
AUTHOR
Eric Angelini and Alois P. Heinz, May 13 2015
STATUS
approved