[go: up one dir, main page]

login
A257776
Decimal expansion of (e/3)^3.
4
7, 4, 3, 9, 0, 8, 7, 7, 4, 9, 3, 2, 8, 7, 6, 5, 8, 2, 9, 9, 7, 3, 5, 2, 9, 5, 0, 1, 6, 9, 6, 9, 3, 2, 5, 5, 4, 4, 3, 9, 9, 6, 5, 8, 6, 6, 1, 3, 1, 1, 6, 6, 7, 2, 0, 1, 4, 0, 3, 4, 6, 0, 1, 0, 9, 9, 9, 5, 7, 2, 5, 4, 7, 4, 4, 1, 4, 7, 1, 7, 5, 2, 2, 9, 7, 9, 6, 1, 9, 1, 1, 2, 0, 4, 8, 2, 1, 3, 7, 1, 1, 6, 8, 0, 0
OFFSET
0,1
COMMENTS
The coefficient a of the unique cubic function y=a*x^3 which kisses the exponential function y=exp(x). In general, a function y = c*x^n kisses the exponential at some x > 0 iff the coefficient c equals (e/n)^n. The kissing point is (n, e^n).
LINKS
EXAMPLE
0.743908774932876582997352950169693255443996586613116672014034601...
MATHEMATICA
RealDigits[(E/3)^3, 10, 120][[1]] (* Amiram Eldar, May 22 2023 *)
PROG
(PARI) (exp(3)/3)^3
CROSSREFS
Cf. A001113, A019740; A257775 (n=2), A257777 (n=1).
Sequence in context: A316250 A199727 A255168 * A364488 A065477 A272526
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, May 12 2015
STATUS
approved