[go: up one dir, main page]

login
A257751
Quasi-Carmichael numbers to exactly one base.
11
35, 77, 143, 165, 187, 209, 231, 247, 273, 299, 357, 391, 399, 437, 493, 527, 561, 589, 598, 713, 715, 943, 989, 1015, 1073, 1189, 1247, 1295, 1333, 1537, 1547, 1705, 1729, 1739, 1829, 1886, 1927, 1961, 2015, 2021, 2257, 2279, 2387, 2397, 2419, 2451, 2479, 2501
OFFSET
1,1
COMMENTS
See A259238 for the corresponding bases.
LINKS
Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..14688
EXAMPLE
a(1) = 35 because this is the first squarefree composite number n such that exactly one nonzero integer b exists such that for every prime factor p of n, p+b divides n+b (-3): 35=5*7 and 2, 4 both divide 32.
PROG
(PARI) for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k==1, print1(n, ", ")))))
CROSSREFS
Cf. A257750 (every number of bases).
Cf. A257758 (first occurrences).
Sequence in context: A254443 A300160 A257750 * A259282 A201068 A111144
KEYWORD
nonn
AUTHOR
STATUS
approved