[go: up one dir, main page]

login
A257462
Number A(n,k) of factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 10, 10, 3, 1, 1, 1, 1, 26, 70, 25, 3, 1, 1, 1, 1, 71, 566, 465, 49, 4, 1, 1, 1, 1, 197, 4781, 11131, 2505, 103, 4, 1, 1, 1, 1, 554, 41357, 297381, 190131, 12652, 184, 5, 1, 1, 1, 1, 1570, 364470, 8349223, 16669641, 2928876, 57232, 331, 5, 1, 1
OFFSET
0,13
COMMENTS
Also number of ways to partition the multiset consisting of n copies each of 1, 2, ..., k into n multisets of size k.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..377 (antidiagonals n=0..26)
EXAMPLE
A(4,2) = 3: (2*3)^4 = 1296 = 6*6*6*6 = 9*6*6*4 = 9*9*4*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 10: (2*3*5*7)^2 = 44100 = 210*210 = 225*196 = 294*150 = 315*140 = 350*126 = 441*100 = 490*90 = 525*84 = 735*60 = 1225*36.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 10, 26, ...
1, 1, 2, 10, 70, 566, ...
1, 1, 3, 25, 465, 11131, ...
1, 1, 3, 49, 2505, 190131, ...
MAPLE
with(numtheory):
b:= proc(n, i, k) option remember; `if`(n=1, 1,
add(`if`(d>i or bigomega(d)<>k, 0,
b(n/d, d, k)), d=divisors(n) minus {1}))
end:
A:= (n, k)-> b(mul(ithprime(i), i=1..k)^n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..8);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 1, 1, Sum[If[d > i || PrimeOmega[d] != k, 0, b[n/d, d, k]], {d, Divisors[n] // Rest}]]; A[n_, k_] := Module[ {p = Product[Prime[i], {i, 1, k}]^n}, b[p, p, k]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
Columns k=0+1, 2-5 give: A000012, A008619, A254233, A257114, A257518.
Rows n=0+1, 2-3 give: A000012, A257520, A333902.
Main diagonal gives A334286.
Cf. A257463, A333901 (ordered factorizations).
Sequence in context: A098120 A098873 A377063 * A337131 A046876 A026584
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 24 2015
STATUS
approved