[go: up one dir, main page]

login
A256324
a(n) = denominator of (1/n^3)*(-1/(n+1) + 16/(n+2) + 3/(4*(2*n+1)) - 81/(4*(2*n+3))), term of a BBP-type series representation of zeta(3) by V. Adamchik and S. Wagon.
1
30, 840, 3780, 3520, 750750, 98280, 2099160, 7441920, 10665270, 5313000, 119390700, 3931200, 40139190, 18501420, 313038000, 241274880, 2175918570, 266493240, 1535455740, 3258024000, 1007504190, 172657320, 16812360600, 3742502400
OFFSET
1,1
LINKS
Victor Adamchik and Stan Wagon, Pi: A 2000-Year Search Changes Direction
David Bailey, Peter Borwein, Simon Plouffe, On the rapid computation of various polylogarithmic constants
Eric Weisstein's MathWorld, BBP-Type Formula
MATHEMATICA
a[n_] := Denominator[(1/n^3)*(-1/(n+1) + 16/(n+2) + 3/(4*(2*n+1)) - 81/(4*(2*n+3)))]; Table[a[n], {n, 1, 40}]
CROSSREFS
Cf. A002117, A256323 (numerators).
Sequence in context: A367332 A049394 A143169 * A001201 A367333 A007850
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved