[go: up one dir, main page]

login
A256007
Numbers k satisfying |k + 1 - 2F| <= 1 for some positive Fibonacci number F.
1
0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 14, 15, 16, 24, 25, 26, 40, 41, 42, 66, 67, 68, 108, 109, 110, 176, 177, 178, 286, 287, 288, 464, 465, 466, 752, 753, 754, 1218, 1219, 1220, 1972, 1973, 1974, 3192, 3193, 3194, 5166, 5167, 5168, 8360, 8361, 8362, 13528, 13529
OFFSET
0,3
COMMENTS
For r > 0, define f(n) = floor(n*r) if n is odd and f(n) = floor(n/r) if n is even. Let S(r,n) be the set {n, f(n), f(f(n)), ...} of iterates of f starting with n. Conjecture: if r = (1 + sqrt(5))/2, then S(r,n) is bounded if and only if n is in this sequence.
LINKS
FORMULA
Conjectures from Colin Barker, May 24 2015: (Start)
a(n) = 2*a(n-3)-a(n-9) for n>12.
G.f.: -x*(x^11+x^10+x^9+2*x^8+x^7-x^4-2*x^3-3*x^2-2*x-1) / ((x-1)*(x^2+x+1)*(x^6+x^3-1)).
(End)
EXAMPLE
F(1) = F(2) contributes {0,1,2}; F(3) contributes {1,2,3}.
MATHEMATICA
u = Table[Fibonacci[k], {k, 2, 30}]; Union[2 u - 2, 2 u - 1, 2 u]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 07 2015
STATUS
approved