OFFSET
0,3
COMMENTS
For r > 0, define f(n) = floor(n*r) if n is odd and f(n) = floor(n/r) if n is even. Let S(r,n) be the set {n, f(n), f(f(n)), ...} of iterates of f starting with n. Conjecture: if r = (1 + sqrt(5))/2, then S(r,n) is bounded if and only if n is in this sequence.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
FORMULA
Conjectures from Colin Barker, May 24 2015: (Start)
a(n) = 2*a(n-3)-a(n-9) for n>12.
G.f.: -x*(x^11+x^10+x^9+2*x^8+x^7-x^4-2*x^3-3*x^2-2*x-1) / ((x-1)*(x^2+x+1)*(x^6+x^3-1)).
(End)
EXAMPLE
F(1) = F(2) contributes {0,1,2}; F(3) contributes {1,2,3}.
MATHEMATICA
u = Table[Fibonacci[k], {k, 2, 30}]; Union[2 u - 2, 2 u - 1, 2 u]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 07 2015
STATUS
approved