[go: up one dir, main page]

login
A255113
Number of length n+6 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.
1
2187, 5157, 7498, 10125, 14001, 19263, 25578, 33063, 41851, 52092, 63954, 77624, 93309, 111237, 131658, 154845, 181095, 210730, 244098, 281574, 323561, 370491, 422826, 481059, 545715, 617352, 696562, 783972, 880245, 986081, 1102218, 1229433
OFFSET
1,1
COMMENTS
Row 6 of A255107.
LINKS
FORMULA
Empirical: a(n) = (1/120)*n^5 + (3/8)*n^4 + (149/24)*n^3 + (2521/8)*n^2 + (56417/60)*n + 385 for n>4.
Empirical g.f.: x*(2187 - 7965*x + 9361*x^2 - 1248*x^3 - 4614*x^4 + 1405*x^5 + 1230*x^6 + 564*x^7 - 1354*x^8 + 435*x^9) / (1 - x)^6. - Colin Barker, Jan 24 2018
EXAMPLE
Some solutions for n=4:
..1....0....1....0....1....2....1....0....2....0....1....1....2....2....0....0
..2....2....2....2....1....0....1....2....1....0....2....1....2....1....1....2
..2....0....0....1....1....0....2....2....1....2....2....2....0....1....2....0
..1....0....0....1....1....1....1....1....1....0....2....0....1....2....2....2
..1....0....0....2....1....1....1....1....1....0....0....1....1....2....2....2
..2....0....1....2....2....2....1....2....1....0....0....1....1....2....0....2
..2....0....1....2....1....2....1....2....1....2....0....2....1....2....1....0
..0....2....2....0....2....2....2....1....2....2....2....2....0....0....1....0
..2....1....2....0....2....0....0....1....1....0....0....2....0....1....1....0
..2....2....1....2....2....1....1....2....1....1....0....0....0....2....0....2
CROSSREFS
Cf. A255107.
Sequence in context: A279070 A046320 A232926 * A255628 A232287 A219134
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 14 2015
STATUS
approved