[go: up one dir, main page]

login
A254883
Triangle read by rows, T(n,k) = sum(j=0..2*(n-k), A254882(n-k,j)*k^j /(n-k)!), n>=0, 0<=k<=n.
1
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 9, 3, 1, 0, 24, 48, 24, 4, 1, 0, 120, 300, 200, 50, 5, 1, 0, 720, 2160, 1800, 600, 90, 6, 1, 0, 5040, 17640, 17640, 7350, 1470, 147, 7, 1, 0, 40320, 161280, 188160, 94080, 23520, 3136, 224, 8, 1
OFFSET
0,8
EXAMPLE
[1]
[0, 1]
[0, 1, 1]
[0, 2, 2, 1]
[0, 6, 9, 3, 1]
[0, 24, 48, 24, 4, 1]
[0, 120, 300, 200, 50, 5, 1]
[0, 720, 2160, 1800, 600, 90, 6, 1]
MATHEMATICA
Flatten[{1, 0, 1, Table[{0, Table[Sum[Sum[Abs[StirlingS1[n-k, m+1]] * Abs[StirlingS1[n-k, j-m]], {m, 0, j-1}]*k^j/(n-k)!, {j, 0, 2*(n-k)}], {k, 1, n-1}], 1}, {n, 2, 10}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
PROG
(Sage)
T = lambda n, k: sum(A254882(n-k, j)*k^j/factorial(n-k) for j in (0..2*(n-k)))
for n in range(6): [T(n, k) for k in (0..n)]
CROSSREFS
Cf. A254882.
Sequence in context: A084938 A135898 A131182 * A266599 A327365 A093729
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 10 2015
STATUS
approved