[go: up one dir, main page]

login
A254576
Primes p such that phi(p-2) divides p-1 where phi is Euler's totient function (A000010).
2
3, 5, 17, 257, 65537, 83623937
OFFSET
1,1
COMMENTS
The first 5 known Fermat primes from A019434 are terms.
Conjecture: also primes p such that 2*phi(p-2) = p-1 (i.e., primes in A232720).
a(7) > 10^25. - Max Alekseyev, Feb 02 2024
PROG
(Magma) [n: n in [3..10000000] | IsPrime(n) and (n-1) mod EulerPhi(n-2) eq 0]
CROSSREFS
Subsequence of A249541.
Sequence in context: A050922 A260476 A070592 * A232720 A272061 A247203
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Feb 25 2015
STATUS
approved