[go: up one dir, main page]

login
A254414
Number A(n,k) of tilings of a k X n rectangle using polyominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
10
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 7, 4, 1, 1, 8, 29, 29, 8, 1, 1, 16, 124, 257, 124, 16, 1, 1, 32, 533, 2408, 2408, 533, 32, 1, 1, 64, 2293, 22873, 50128, 22873, 2293, 64, 1, 1, 128, 9866, 217969, 1064576, 1064576, 217969, 9866, 128, 1, 1, 256, 42451, 2078716, 22734496, 50796983, 22734496, 2078716, 42451, 256, 1
OFFSET
0,8
COMMENTS
A polyomino of shape I is a rectangle of width 1.
All columns (or rows) are linear recurrences with constant coefficients. An upper bound on the order of the recurrence is A005683(k+2). This upper bound is exact for at least 1 <= k <= 10. - Andrew Howroyd, Dec 23 2019
LINKS
Wikipedia, Polyomino
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 4, 8, 16, 32, ...
1, 2, 7, 29, 124, 533, 2293, ...
1, 4, 29, 257, 2408, 22873, 217969, ...
1, 8, 124, 2408, 50128, 1064576, 22734496, ...
1, 16, 533, 22873, 1064576, 50796983, 2441987149, ...
1, 32, 2293, 217969, 22734496, 2441987149, 264719566561, ...
PROG
(PARI)
step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*2^hammingweight(bitand(S[i], S[j]))))}
mkS(k)={apply(b->bitand(b, 2*b+1), [2^(k-1)..2^k-1])}
T(n, k)={if(k<2, if(k==0||n==0, 1, 2^(n-1)), my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v, S)); vecsum(v))} \\ Andrew Howroyd, Dec 23 2019
CROSSREFS
Columns (or rows) k=0-7 give: A000012, A011782, A052961, A254124, A254125, A254126, A254458, A254607.
Main diagonal gives: A254127.
Cf. A005683.
Sequence in context: A177254 A340910 A132311 * A199802 A297347 A342623
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 30 2015
STATUS
approved