I wasn’t happy with some aspects of my former version of the go program for generating
a254077, so I made a few changes. I'll describe some as we go along, but they made it
possible to generate 5,000,000,000 terms. One change is an option to create a file whose
intent is to simplify confirming many of the conjectures on the a254077 page. I hope to
extend the sequence, but would appreciate suggestions for additions to the file before I
make a time-consuming run. Each time a prime p appears as A[n] in the sequence, a line
containing the letter P is written. The P is followed by a number if and only if A[n-2]/p is
not 2, in which case the number following P will be A[n-2]/p. So we can check the first
half of conjecture

For k>=3, except for k=5, if a(n) = prime(k),
then a(n-2) = 2*prime(k) and a(n+2) = 3*prime(k).

by "grepping" through the conjectures file, producing the single line shown.

grep 'P[0-9]’ conjectures
A[21]=11{11}:22<LP3

This takes several seconds to scan the 6 billion byte conjectures file, but if one were to
confirm the conjecture using only the 10 billion byte file containing the first five billion
terms of a254077, it would be necessary to determine which terms were prime, and to
retain a record of the two previous terms, so the conjectures file is likely to be a
significant aid.

Disassembling the

A[21]=11{11}:22<LP3
line, the

A[21]=11{11}:22
prefix is present on all lines in the conjectures file, indicating here that term 21 is 11,
whose factors, in curly braces, are 11, not particularly enlightening for prime terms, but
helpful in other contexts. The number following the colon is the "least unseen
composite" (LUC) integer, which I'll discuss later. The implication here is that all
composite integers less than 22 have already appeared in the sequence, but 22 itself has
not yet appeared. What follows the "standard prefix" is information that makes this
element notable. We have already seen how P3 identifies a prime, and one, the only one
it turns out, for which A[n-2] is something other, 3, in this case, than 2 times the prime.
I’1l turn to the <L characters shortly, but while we’re considering the conjecture above,
whenever an element is of the form 3p for some prime p greater than 3, a line containing

T{/1}{/2}
where £1 are the factors of A[n-1] and £2 are the factors of A[n-2] unless A[n-2] is p.



So

grep T conjectures
A[19]1=33{3*11}:22T{2"2*5}{3°3}G{2"2*5} {373}

produces the single case where a(n) = prime(k) and a(n+2) != 3*prime(k) which was

explicitly excluded from the conjecture.

Returning to the meaning of

A[21]=11{11}:22<LP3
any terms for which A[n] < n cause a line containing the character "<" to appear in the
file. Thus, the command

grep ’'<’ conjectures | grep -v P

will show all the terms for which A[n] < n, excluding those for which A[n] is prime. For
the first 5 billion terms, this produces 25 lines starting

A[4]=4{2"2}:6{2*3}C<LG{3}{2}
A[16]=16{2"4}:20{2"°2%5}C!<
A[23]=22{2*11}:25{5°2}C<
A[30]=25{5"2}:34{2*17}C<

and ending

A[529]=527{17*31}:533{13*41}C<
A[547]=533{13*%41}:551{19*29}C<
A[707]=703{19%37}:730{2*5%73}C!<
A[778]=767{13*59}:791{7*113}C<

confirming the conjecture
For n > 779, if a(n) < n, then a(n) is prime
(which really should have been written
For n > 778, if a(n) < n, then a(n) is prime
although it is not incorrect.)
Whenever term A[n] is the least integer hitherto unseen in the sequence, a line containing
the letter L appears in the file. Thus, the single line produced by the command

grep L conjectures | grep -v P
A[4]=4{2"2}:6{2*3}C<LG{3}{2}

confirms the conjecture

For any n > 4, the lowest value x missing from a(1) thru a(n) is prime.



For any primes p < q, if q appears in the sequence before p, q cannot be the least unseen
integer, since p has not yet been seen. This would result in a line with a P, since q is
prime, but without an L, since q is not the least unseen integer.

grep P conjectures | grep -v L
produces no output so we can confirm the conjecture
The primes exist as elementary terms of the sequence in ascending order

Having described the meaning of the characters <PTL in line of the file, I'll turn to
character C. It appears whenever A[n] was the hitherto least unseen composite (LUC).
The appearance of C in the results of the previous example,

grep L conjectures | grep -v P
A[4]=4{2"2}:6{2*3}C<LG{3}{2}

indicates that A[4], the previous LUC, was 4, and the new LUC is now 6, the sole
instance of the least unseen integer being a composite.

The reason for keeping track of LUC, and reporting it as part of the "standard prefix",
gets into the weeds of changes to the program, and may well not matter much to
mathematicians as opposed to programmers. But one surprising (to me) observation is
that after element number 261769, the LUC is a semiprime, an integer of the form pq, for
(not necessarily distinct) primes p and q. That is, all LUCs after element number 261769
appear to be either of the form p squared, or pq, for some primes p and q. That surprised
me enough that I tagged all new LUCs not of that form with a C!, not merely with a C.
As aresult

grep C! conjectures
for the first 5 billion terms, this resulted in 278 lines, starting with

A[5]=6{2%3}:8{2"3}C!G{2"2}{3}
A[8]=10{2*5}:12{2"2%3}C!G{3°2}{2"3}
A[12]=15{3*5}:16{2"4}C!G{2*7}{5}
A[16]=16{2"4}:20{2"2*5}C!<

and ending with

A[261736]=267646{2*163%821}:267650{2*5°2*53*101}C!
A[261737]=267650{2*5"2*53%101}:267652{2"2*7*11°2*79}C!
A[261758]=267653{19%14087}:267669{3°2*%29741}C!
A[261769]=267673{7*38239}:267683{13*59%349}C!

278 exceptions over 261769 terms is hardly compelling, but the lack of any exceptions
over the next nearly 5 billion terms is hard to dismiss.

John Mason has conjectured

each prime p seems to appear at a term n which is approaching 2p, as p increases



I have observed that p divided by either the previous LUC or the current LUC appears to
converge to 2 even faster. I wrote a small script to process the conjectures file. Each time
lines containing C, are encountered, lines of the form

C A[64]=64{2"6} => 72{2°3%3"2}
C A[66]=72{2"3*3"2} => 74{2%37}
C A[68]=74{2*37} => 76{2°2*19}

are produced, summarizing the transition from one LUC to the next. The previous LUC
is retained by the script. When a line containing P is encountered, four lines are
produced:

P1 A[70]=37:76

Pi 1.89189189189189 70/37
Pp 2.00000000000000 74/37
Pc 2.05405405405405 76/37

Each P1 line is a simple summary of the index where the prime occurred, and the current
LUC. The Pi, Pp and Pc lines are, respectively, prime p divided into the index, the
previous LUC (retained by the script), and the current LUC. With increasing primes, all
appear to converge to 2, but do so faster for the previous and current LUC. Here are the
final lines of the summary for 5 billion terms of a254077:

Pl A[4999999787]1=2531444161:5062819813

Pi 1.97515705225939 4999999787/2531444161
Pp 1.99997284119434 5062819571/2531444161
Pc 1.99997293679195 5062819813/2531444161
Pl A[4999999816]1=2531444171:5062819813

Pi 1.97515705591281 4999999816/2531444171
Pp 1.99997283329382 5062819571/2531444171
Pc 1.99997292889143 5062819813/2531444171
Pl A[4999999897]1=2531444213:5062819813

Pi 1.97515705513989 4999999897/2531444213
Pp 1.99997280011163 5062819571/2531444213
Pc 1.99997289570924 5062819813/2531444213

Although it appears to be the case that LUCs eventually assume the form p*q, p<=q, it is
certainly not the case that all integers of that form appear as LUCs. And although it is
often the case that p and q are close to their geometric mean, it is not always so. Small
primes p provide counterexamples. The last observed occurrences of p being 2 is

A[69280]=71017{47*1511}:71018{2*35509}C
Even late in the sequence, primes can diverge significantly from the geometric mean.
A[4999962978]=5062784981{65993*76717}:5062785061{22853*221537}C

I wondered if p“2, as close as one can hope to get to the geometric mean, always appeared
as an LUC. Very often, but not always. Among the first 5 billion terms, the last
exception was for prime 71153, whose square is 5062749409. It is bracketed by
consecutive LUC terms



A[4999952501]1=5062746847{46747*108301}:5062777019{67763*74713}C
A[4999956928]1=5062777019{67763*74713}:5062780211{34313*147547}C

The only 3*q LUC is
A[11]1=14{2*%7}:15{3*5}CG{5}{2"2*3}

This example is a plausible segue into the remaining two key-letters for conjecture lines.
The G character appears when the term achieves a new maximum (think Greatest,
paralleling Least). I report this because I was interested in seeing long sequences of
2p/p/3p/4p/... as alternating terms in a254077. These need not correspond to new
maxima in a254077, but they often do. Here are a couple G lines from the conjectures
file, split to display properly.

A[2326315597]=8248198721{7*1178314103}:2356582043
G{2°2*3°2%5%13092379}{2+3*1178314103}

A[2326315599]=9426512824{2"3%1178314103}:2356582043
G{3°2*7%4259+8783}{7+1178314103}

The numbers in braces following the G are the factors of A[n-1] and A[n-2]. (I currently
retain only two previous terms.) These two lines show that 8%1178314103 at term
2326315599 was preceded by 7*1178314103 at term 2326315597, which was, in turn,
preceded by 6%¥1178314103 at term 2326315595 (although this term did not establish a
new maximum, so it did not appear in the conjectures file). We can use this information
to inspect the complete a254077 sequence, and we find

A[23263155841=2356628235: 3 5 13 19 37 17191
A[2326315585]=2356628206: 2 1178314103
A[2326315586]1=2356628159: 19 151 821411
A[2326315587]1=1178314103: 1178314103
A[2326315588]=2356628197: 7 7 11 19 230117
A[2326315589]1=3534942309: 3 1178314103
A[2326315590]=2356628208: 2 2 2 2 3 11 23 194057
A[2326315591]1=4713256412: 2 2 1178314103
A[2326315592]1=2356628200: 2 2 2 5 5 11783141
A[2326315593]1=5891570515: 5 1178314103
A[2326315594]1=2356628210: 2 5 235662821
A[2326315595]1=7069884618: 2 3 1178314103
A[2326315596]=2356628220: 2 2 3 3 5 13092379
A[2326315597]1=8248198721: 7 1178314103
A[2326315598]=2356628211: 3 3 7 4259 8783
A[2326315599]1=9426512824: 2 2 2 1178314103
A[2326315600]=2356628214: 2 3 392771369
A[2326315601]1=2356628212: 2 2 589157053

The alternating multiples of 1178314103 are separated by terms that "block" use of
anything other than the next multiple. For example, term 2326315598 has a factor of 7 as
did term 2326315597, so only another multiple of 1178314103 can appear at term
2326315599. However, term 2326315600 does not have a factor of 8, so term
2326315601 need not be, and is not, a multiple of 1178314103.



No "run of prime multiples" longer than 8 was detected using G lines. They may have
occurred, but if so, they did not trigger new maxima. Extending the number of terms in
a254077 may (or may not) reveal longer runs.

If flag study-all is set to true, all elements of a254077 will appear in the conjectures file,
along with character F (think Factor). As a consequence, the factors associated with all
terms in the sequence will be displayed. Needless to say, this will lead to an enormous
increase in the size of the conjectures file, so it is not practical if disk space is limited.
For relatively small numbers of terms, though, the visibility of factors of all terms can
make it easier to understand why a given term is appropriate. The following terms near
the start of a254077 can help those not adept at mentally factoring integers to see why
terms are suitable:

A[17]1=27{3"3}:20G{2"4}{3*7}F
A[18]=20{2"2%5}:22{2*11}CF
A[19]=33{3*11}:22T{2"°2%5}{3°3}G{2°2*5}{3"3}F
A[20]=24{2"3%3}:22F

A[21]=11{11}:22<LP3F

A[22]=26{2*13}:22F

A[23]=22{2*11}:25{5"2}C<F
A[24]=13{13}:25<LPF

For those interested more in the revised method of generating a254077 than in the
mathematics behind it, previous versions of my program suffered from a number of flaws.
In no particular order

« Earlier versions showed vestigial signs of a brute-force approach that tested the gcd
of all unseen integers, in increasing order, with A[n-2] and A[n-1]. This evolved to
a distinction between unseen prime integers and unseen composite integers, with
the latter restricted to multiples of the factors of A[n-2]. The current version
removes that artificial distinction, and limits all unseen integers to be multiples of
the factors of A[n-2].

« Unseen primes were originally maintained in a "pool", whose replenishment
caused arbitrary "stalls" in the production of terms of a254077. Since a table of
primes is maintained to enable factoring of terms, the least unseen prime(s) can be
determined by simply maintaining the index in that table of the least unseen prime.

(It might be appropriate to modify John’s comments about
If a(n) EXISTS AND a(n) > a(n-2)/2 then a(n) is composite... This theorem
improves the efficiency of sequence generation algorithms.

to say
If a(n) EXISTS AND a(n) > a(n-2)/2 then a(n) is composite... This theorem

improves the efficiency of some sequence generation algorithms.

since my current algorithm makes no use of this fact.)



 Unseen integers k co-prime with A[n-2] need not be considered, since 1 cannot not
possibly be greater than gcd(k,A[n-1]). It is therefore sufficient to consider only
unseen integers sharing some prime factor p with A[n-2]. An earlier version of the
program recognized that if p“e2 is the largest power of p dividing A[n-2] and p“el
is the is the largest power of p dividing A[n-1], if el>=e2, then unseen multiples of
p need not be considered, since they will contribute at least as much to
gcd(k,A[n-1]). The current version goes a step further. If el<e2, then we can
ignore multiples of p less than p“(el+1), for the same reason. This can
substantially reduce the number of unseen candidates considered.

» By considering the factors of A[n-2] and A[n-1], we know which powers of which
primes can be factors of a satisfactory candidate for A[n]. But for each p“e, what
multiple k do we start with? Knowing the least unseen integer, any lesser multiple
must already have been seen, so it need not be considered. The program keeps
track of the least unseen integer, which, by conjecture and observation, is almost
always the least unseen prime (LUP). If e is 1 and p is greater than the least unseen
integer, we start at p itself. Otherwise, we must be looking for some composite
integer. We need not consider any integers between the least unseen integer and the
least unseen composite (LUC). As described above, this eliminates integers
between the LUP and roughly twice that number. As the LUP and LUC get large,
eliminating the intervening integers produces significant performance gains. This
is why the program keeps track of the LUC.

» A previous version used only a "bitmap" to identify those integers that had not yet
been seen. The bitmap had to be large enough to anticipate a test for any unseen
integer, but there was no "science" behind determining how large that might be.
For 2.5 billion terms, a "guess" was made that it might be 5 times that large. It
turned out the guess was good enough. Sorting those 2.5 billion terms, and looking
at the final few, revealed

1056709691
1099727689
1105950739

A[2086096436]1=7396967837: 17
A[2171076029]1=7698093823: 7
A[2183369814]1=7741655173: 7
A[2190956762]1=7768539947: 7 1109791421
A[2201483792]1=7805843857: 7 1115120551
A[2306399120]1=8177626289: 7 1168232327
A[2322949701]1=8236273367: 7 1176610481
A[2323872224]1=8239540379: 7 1177077197
A[2326315597]1=8248198721: 7 1178314103
A[2326315599]1=9426512824: 2 2 2 1178314103

The largest term, 9426512824, (possibly familiar from the discussion of the G lines,
as could be the previous terms,) would have "fit" if the bitmap had allocated only
four bits per term. But the program checks on integers that don’t necessarily
appear in the sequence. It would have checked to see if 9*1178314103 was
unseen, and that would have been too large if we had only allocated 4 bits per term.
If the "guess" had been wrong, the program would not have produced invalid
results. But it would have died, annoyingly late in the generation of the sequence,
at which time a larger guess could have been tried (from the beginning).



Significantly, look at the distance between consecutive terms. The last ten terms
span 9426512824-7396967837=2029544987 integers, more than .2 billion bits per
term. That is terribly inefficient use of memory. In fact, only 323130 terms were
greater than 2*2,500,000,000. So we can identify almost all of the terms with just
2 bits per term, using a hash table to identify the outliers. This made it possible to
produce 5 billion terms using a smaller bitmap than was originally used for half
that many terms. And the code is far less "brittle". It may (or may not) slow down,
but it won’t die. The hash table grows as necessary to accommodate new additions.

It is computationally simple and efficient to search a bitmap for an integer than is
both unseen and not a prime. When such integers are widely separated in the
bitmap, entire 64-bit words will be 0, and we can skip those 64 integers
"wholesale". This makes it easy to advance from one LUC to the next, providing
both are represented in the bitmap. There is no such "wholesale" technique for
ignoring missing elements in a hash table: integers must be tested one at a time.
This make it less practical to keep track of the LUC if does not appear in the
bitmap.

The LUC tends to be just slightly larger than the sequence number. Here, for
example, is the final P entry in the conjectures file for 5 billion terms.

A[4999999897]1=2531444213{2531444213}:5062819813<LP

So allocating 2 bits per term appears to be more than adequate. The correctness of
the program does not depend on knowing the LUC precisely. As long as all
composite integers between the least unseen integer and the current value of the
LUC are, indeed, unseen, we will never overlook an unseen composite. We can
therefore limit the value of the LUC to be the largest integer represented in the
bitmap, even if the true value is known to be larger. This could diminish the benefit
associated with not even considering composite candidates less than the true LUC,
but it cannot lead to incorrect results.



