[go: up one dir, main page]

login
A253803
a(n) gives one fourth of the even leg of one of the two Pythagorean triangles with hypotenuse A080109(n) = A002144(n)^2. The odd leg is given in A253802(n).
3
6, 39, 60, 210, 210, 410, 630, 915, 1320, 1780, 2340, 990, 2730, 3164, 4620, 5215, 5610, 4290, 8145, 8106, 2730, 6630, 12116, 12540, 4080, 17485, 17451, 18480, 9690, 24414
OFFSET
1,1
COMMENTS
See A253802 for comments and the Dickson reference.
REFERENCES
L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
FORMULA
a(n) = sqrt(A080109(n)^2 - A253802(n)^2)/4, n >= 1.
EXAMPLE
n = 7: A080175(7) = 7890481 = 53^4 = 2809^2; A002144(7)^4 = A253802(7)^2 + (4*a(7))^2 = 1241^2 + (4*630)^2.
The other Pythagorean triangle with hypotenuse
53^2 = 2809 has odd leg A253804(7) = 2385 and even leg 4*A253305(7) = 4*371 = 1484: 53^4 = 2385^2 + (4*371)^2.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 14 2015
STATUS
approved