[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253722 Triangle read by rows: coefficients of the partition polynomials for the reciprocal of the derivative of a power series, g(x)= 1/h'(x). 1

%I #39 Feb 20 2024 01:11:18

%S 1,-2,4,-3,-8,12,-4,16,-36,9,16,-5,-32,96,-54,-48,24,20,-6,64,-240,

%T 216,128,-27,-144,-60,16,30,24,-7,-128,576,-720,-320,216,576,160,-108,

%U -96,-180,-72,40,36,28,-8

%N Triangle read by rows: coefficients of the partition polynomials for the reciprocal of the derivative of a power series, g(x)= 1/h'(x).

%C This entry contains the integer coefficients of the partition polynomials P(n;h_1,h_2,...,h_(n+1)) for the reciprocal g(x) of the derivative of a power series in terms of the coefficients of the power series; i.e., g(x) = 1/[dh(x)/dx] = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = sum[n>=0, (h_1)^(-(n+1)) * P(n;h_1,...,h_(n+1)) * x^n].

%C This is a signed refinement of reversed A181289. See A145271, A133437, and A133314 for relations to compositional and multiplicative inversions.

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%F For the partition (1')^e(1)*(2')^e(2)*...*(n')^e(n) in P(m;...), the unsigned integer coefficient is [e(2)+e(3)+...+e(n)]! * [2^e(2)*3^e(3)*...*n^e(n)]/[e(2)!*e(3)!*...*e(n)!] with the sign determined by (-1)^[e(1) + m].

%F The partitions of P(m;..) are formed by adding one to each index of the partitions of m of Abramowitz and Stegun's partition table (p. 831; in the reversed order) and appending (1')^e(1) as a factor to obtain a partition of 2m.

%F Row sums are 1,-2,1,0,0,0,... . Row sums of the unsigned coefficients are A003480.

%e Let h(x) = h_0 + h_1 * x + h_2 * x^2 + ... . Then g(x) = 1/h'(x) = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = (h_1)^(-1) P(0;h_1) + (h_1)^(-2) * P(1;h_1,h_2) * x + (h_1)^(-3) * P(2;h_1,h_2,h_3) * x^2 + ... , and, with h_n = (n'), the first few partition polynomials are

%e P(0;..)= 1

%e P(1;..)= -2 (2')

%e P(2;..)= 4 (2')^2 - 3 (3')(1')

%e P(3;..)= -8 (2')^3 + 12 (3')(2')(1') - 4 (4')(1')^2

%e P(4;..)= 16 (2')^4 - 36 (2')^2(3')(1') + [9 (3')^2 + 16 (4')(2')](1')^2 - 5 (5')(1')^3

%e P(5;..)= -32 (2')^5 + 96 (2')^3(3')(1') + [-54 (3')^2(2') - 48 (4')(2')^2](1')^2 + [24 (3')(4') + 20 (5')(2')](1')^3 - 6 (6')(1')^4

%e P(6;..)= 64 (2')^6 - 240 (2')^4(3')(1') + [216 (3')^2(2') + 128 (4')(2')^3](1')^2 - [27 (3')^3 + 144 (4')(3')(2') + 60 (5')(2')^2](1')^3 + [16 (4')^2 + 30 (5')(3') + 24 (6')(2')](1')^4 - 7 (7')(1')^5

%t rows[n_] := {{1}}~Join~With[{s = 1/(1 + Sum[(k+1) u[k] x^k, {k, n}] + O[x]^(n+1))}, Table[Coefficient[s, x^k Product[u[t], {t, p}]], {k, n}, {p, Reverse@Sort[Sort /@ IntegerPartitions[k]]}]];

%t rows[7] // Flatten (* _Andrey Zabolotskiy_, Feb 19 2024 *)

%o (PARI)

%o C(v)={my(S=Set(v)); (-1)^(#v)*(#v)!*prod(i=1, #S, my(x=S[i], e=#select(y-> y==x, v)); (x+1)^e/e! )}

%o row(n)=[C(Vec(p)) | p<-Vecrev(partitions(n))]

%o { for(n=0, 7, print(row(n))) } \\ _Andrew Howroyd_, Feb 19 2024

%Y Cf. A181289, A133437, A145271, A133314, A003480.

%K sign,tabf

%O 0,2

%A _Tom Copeland_, May 02 2015

%E Row 7 added by _Andrey Zabolotskiy_, Feb 19 2024

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 00:57 EDT 2024. Contains 375520 sequences. (Running on oeis4.)