[go: up one dir, main page]

login
A253707
Numbers M(n) which are the number of terms in the sums of consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).
6
17, 98, 291, 644, 1205, 2022, 3143, 4616, 6489, 8810, 11627, 14988, 18941, 23534, 28815, 34832, 41633, 49266, 57779, 67220, 77637, 89078, 101591, 115224, 130025, 146042, 163323, 181916, 201869, 223230, 246047, 270368, 296241, 323714, 352835, 383652, 416213
OFFSET
1,1
COMMENTS
Numbers M(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b(n) being an odd squared integer (A016754).
To every odd squared integer b corresponds a sum of a consecutive cubed integers starting at b having at least one nontrivial solution. For n>=1, b(n)= (2n+1)^2 (A016754), M(n) = (sqrt(b)-1) (2b-1)/2 = n(8n(n+1)+1) (this sequence), and c(n)= (b-1)(4b^2-1)/8 = (n (n+1)/2)(4(2n+1)^4-1) (A253708).
The trivial solutions with M < 1 and b < 2 are not considered here.
FORMULA
a(n) = n(8n(n+1)+1).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Colin Barker, Jan 10 2015
G.f.: x*(x^2+30*x+17) / (x-1)^4. - Colin Barker, Jan 10 2015
EXAMPLE
For n=1, b(n)=9, M(n)=17, c(n)=323 (see File Triplets link).
MAPLE
restart: for n from 1 to 50000 do a:= n*(8*n*(n+1)+1): print (a); end do:
MATHEMATICA
f[n_] := n*(8 n (n + 1) + 1); Array[f, 52] (* Michael De Vlieger, Jan 10 2015 *)
LinearRecurrence[{4, -6, 4, -1}, {17, 98, 291, 644}, 40] (* Harvey P. Dale, Jul 31 2018 *)
PROG
(PARI) Vec(x*(x^2+30*x+17)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 10 2015
(Magma) [n*(8*n*(n+1)+1): n in [1..40]]; // Vincenzo Librandi, Feb 19 2015
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jan 09 2015
STATUS
approved