OFFSET
1,1
COMMENTS
Numbers M(n) such that b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 has nontrivial solutions over the integers for b(n) being an odd squared integer (A016754).
To every odd squared integer b corresponds a sum of a consecutive cubed integers starting at b having at least one nontrivial solution. For n>=1, b(n)= (2n+1)^2 (A016754), M(n) = (sqrt(b)-1) (2b-1)/2 = n(8n(n+1)+1) (this sequence), and c(n)= (b-1)(4b^2-1)/8 = (n (n+1)/2)(4(2n+1)^4-1) (A253708).
The trivial solutions with M < 1 and b < 2 are not considered here.
LINKS
Vladimir Pletser, Table of n, a(n) for n = 1..50000
Vladimir Pletser, File Triplets (M,b,c) for a=(2n+1)^2
Vladimir Pletser, Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares, Research Gate, 2015.
Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = n(8n(n+1)+1).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Colin Barker, Jan 10 2015
G.f.: x*(x^2+30*x+17) / (x-1)^4. - Colin Barker, Jan 10 2015
EXAMPLE
For n=1, b(n)=9, M(n)=17, c(n)=323 (see File Triplets link).
MAPLE
restart: for n from 1 to 50000 do a:= n*(8*n*(n+1)+1): print (a); end do:
MATHEMATICA
f[n_] := n*(8 n (n + 1) + 1); Array[f, 52] (* Michael De Vlieger, Jan 10 2015 *)
LinearRecurrence[{4, -6, 4, -1}, {17, 98, 291, 644}, 40] (* Harvey P. Dale, Jul 31 2018 *)
PROG
(PARI) Vec(x*(x^2+30*x+17)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 10 2015
(Magma) [n*(8*n*(n+1)+1): n in [1..40]]; // Vincenzo Librandi, Feb 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jan 09 2015
STATUS
approved