Recurrence relation for the second partial sums of m-th powers

By Luciano Ancora

We build with Excel the table that calculates, for successive additions, the partial sums of powers of natural numbers:

n	n ^m	1 th sums	2 th sums
1			
2			d
3		b	е
4	а	С	f
5			
6			

We want to obtain the recurrence relation for the second sums, that is, a formula for calculating the n-th term in the column "2th sums" as a function of the previous terms.

The formula that we seek is obtained by analyzing the data in the table as follows:

c = a + b e = b + df = c + e = a + b + e = a + e - d + e = 2e - d + a

Indicating with a(n) the n-th term of the sequence, we therefore have:

```
a(n) = 2^*a(n-1) - a(n-2) + n^m
```

This recurrence relation is valid, by *induction*, for each (n, m) and for each order of the partial sums.