[go: up one dir, main page]

login
A253317
Indices in A261283 where records occur.
15
0, 1, 2, 3, 8, 9, 10, 11, 128, 129, 130, 131, 136, 137, 138, 139, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 2147483648, 2147483649, 2147483650, 2147483651, 2147483656, 2147483657
OFFSET
1,3
COMMENTS
From Gus Wiseman, Dec 29 2023: (Start)
These are numbers whose binary indices are all powers of 2, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, the terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
130: 10000010 ~ {2,8}
131: 10000011 ~ {1,2,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
138: 10001010 ~ {2,4,8}
139: 10001011 ~ {1,2,4,8}
For powers of 3 we have A368531.
(End)
LINKS
Lorenzo Sauras-Altuzarra, Some arithmetical problems that are obtained by analyzing proofs and infinite graphs, arXiv:2002.03075 [math.NT], 2020.
FORMULA
a(1) = 0 and a(n) = a(n-A053644(n-1)) + 2^(A053644(n-1)-1). - Lorenzo Sauras Altuzarra, Dec 18 2019
a(n) = A358126(n-1) / 2. - Tilman Piesk, Dec 18 2022
a(2^n+1) = 2^(2^n-1) = A058891(n+1). - Gus Wiseman, Dec 29 2023
a(2^n) = A072639(n). - Gus Wiseman, Dec 29 2023
G.f.: 1/(1-x) * Sum_{k>=0} (2^(-1+2^k))*x^2^k/(1+x^2^k). - John Tyler Rascoe, May 22 2024
MAPLE
a := proc(n) local k, A:
A := [seq(0, i=1..n)]: A[1]:=0:
for k from 1 to n-1 do
A[k+1] := A[k-2^ilog2(k)+1]+2^(2^ilog2(k)-1): od:
return A[n]: end proc: # Lorenzo Sauras Altuzarra, Dec 18 2019
# second Maple program:
a:= n-> (l-> add(l[i+1]*2^(2^i-1), i=0..nops(l)-1))(Bits[Split](n-1)):
seq(a(n), n=1..38); # Alois P. Heinz, Dec 13 2023
MATHEMATICA
Nest[Append[#1, #1[[-#2]] + 2^(#2 - 1)] & @@ {#, 2^(IntegerLength[Length[#], 2] - 1)} &, {0, 1}, 36] (* Michael De Vlieger, May 08 2020 *)
PROG
(PARI) a(n)={if(n<=1, 0, my(t=1<<logint(n-1, 2)); a(n-t) + 2^(t-1))} \\ Andrew Howroyd, Dec 20 2019
CROSSREFS
Cf. A053644 (most significant bit).
A048793 lists binary indices, length A000120, sum A029931.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Sequence in context: A037462 A309125 A037318 * A277971 A080288 A278560
KEYWORD
nonn,base
AUTHOR
Philippe Beaudoin, Dec 30 2014
EXTENSIONS
Corrected reference in name from A253315 to A261283. - Tilman Piesk, Dec 18 2022
STATUS
approved