[go: up one dir, main page]

login
A252676
Number of (n+2)X(5+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 2 5 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 2 5 6 or 7
1
1802, 3185, 9794, 26744, 96174, 314753, 916706, 3355456, 11123034, 32742110, 120563173, 402117190, 1187329749, 4381126617, 14653518344, 43323504105, 160002531150, 535852917600, 1585231565872, 5857127789064, 19627810957386
OFFSET
1,1
COMMENTS
Column 5 of A252679
LINKS
FORMULA
Empirical: a(n) = 77*a(n-3) -2158*a(n-6) +32583*a(n-9) -348131*a(n-12) +2889365*a(n-15) -18492500*a(n-18) +92728268*a(n-21) -359935970*a(n-24) +1049776470*a(n-27) -2303619848*a(n-30) +3574268409*a(n-33) -2501583784*a(n-36) -2506364248*a(n-39) +5789534449*a(n-42) -1252712555*a(n-45) -3752683510*a(n-48) +1446164926*a(n-51) +2010964494*a(n-54) -1425040391*a(n-57) -173735537*a(n-60) +433798397*a(n-63) -101614039*a(n-66) -6614731*a(n-69) +4474824*a(n-72) -1986952*a(n-75) +69976*a(n-78) +30306*a(n-81) +1767*a(n-84) +76*a(n-87) -32*a(n-90) for n>92
EXAMPLE
Some solutions for n=4
..3..2..0..0..2..0..0....0..0..2..0..0..2..0....1..1..0..1..1..3..1
..1..1..0..1..1..0..1....0..1..1..0..1..1..0....3..1..1..0..1..1..0
..0..1..1..0..1..1..0....1..3..1..1..0..1..1....0..2..3..0..2..0..3
..0..2..0..0..2..0..3....0..0..2..0..0..2..3....1..1..0..1..1..0..1
..1..1..3..1..1..0..1....0..1..1..0..1..1..0....0..1..1..0..1..1..0
..0..1..1..0..1..1..0....1..0..1..1..0..1..1....0..2..0..3..2..0..3
CROSSREFS
Sequence in context: A020402 A180685 A222418 * A248063 A256027 A196788
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2014
STATUS
approved