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We consider an operator I on formal power series, closely related to the series
reversion operator, and show how to de�ne complex iterates Iα of I. The
power series expansion of Iα(f(x)) is found. Examples include the generalized
binomial and generalized exponential series of Lambert.

We begin by recalling some facts about formal power series [4].

Let g(x) be a formal power series with complex coe�cients of the form

g(x) = x+ g2x
2 + g3x

3 + · · · .

There is a unique formal power series h(x), called the compositional inverse of
g(x), such that

h(g(x)) = g(h(x)) = x.

The process of �nding the coe�cients of the series h(x) from those of g(x) is
called series reversion or series inversion. We denote h(x) by Rev(g(x)), where
Rev is the series reversion operator.

Let

f(x) = 1 + f1x+ f2x
2 + f3x

3 + · · · (1)

be a formal power series with constant term 1. We can raise a power series of
this type to an arbitrary complex power α. Indeed, if we write f in the form

f(x) = 1 + S(x),

with S(x) =
∑
n≥1

fnx
n, then we have, by virtue of the generalized binomial

theorem,

fα(x) = 1 +
∑
n≥1

(
α

n

)
Sn(x),

Collecting together the powers of x we obtain

fα(x) =
∑
n≥0

pn(α)x
n,

a well-de�ned formal power series, where pn(t) is a sequence of convolution
polynomials [3].
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De�nition 1. We de�ne a series inversion operator I, acting on power series
f(x) of the form (1), by

I(f(x)) =
1

x
Rev

(
x

f(x)

)
. (2)

The Lagrange inversion formula gives the coe�cents in the power series
expansion of I(f(x)) as

[xn] I(f(x)) =
1

n+ 1
[x]

n
f(x)n+1.

The power series I(f(x)) has the same form as f(x) with constant term 1.
Thia allows us to iterate the inversion operator I.

Example 1. Let f(x) = 1/(1− x) = 1 + x+ x2 + x3 + · · · , the generating
function for the all 1's sequence, A000012. Then

I(f(x)) =
1

x
Rev (x(1− x))

=
1−
√
1− 4x

2x

is the generating function for the Catalan numbers, A000108. One (of the
many) combinatorial interpretations of the Catalan numbers is as the number
of full binary trees with n internal vertices. By a slight abuse of notation we
display this relationship between the two sequences diagramatically as

A000012
I // A000108

Iteration of the operator I produces the following diagram of OEIS sequences.

A000108
I // A001764

I // A002293
I // A002294

I // A002295
I // A002296

I // · · ·

Combinatorially, these sequences enumerate k-ary trees for k = 2, 3, 4, ....

The opertor I is invertible with inverse denoted I−1. It follows from (2) that

I−1(f(x)) =
x

Rev(xf(x))
,

which we can write in the more suggestive form

I−1(f(x)) =

(
1

x
Rev

(
x

f−1(x)

))−1
, (3)
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where the exponent −1 occurring on the right-hand side means reciprocation
of a function.

De�nition 2. Let α ∈ C. Let f(x) be a power series of the form (1). We
de�ne Iα, the fractional inversion operator of order α, by putting
I0(f(x)) = f(x) and setting

Iα (f(x)) = (I(fα(x)))
1
α

=

(
1

x
Rev

(
x

fα(x)

)) 1
α

for α 6= 0. (4)

Clearly, this de�nition agrees with (3) when α = −1, and we also have I1 = I.

We have used the same misnomer here as in fractional calculus by referring to
the operator Iα as a fractional inversion operator, even when α is not a
rational number.

In order for the de�nition of fractional inversion to be useful we would like the
operator In to equal the n-fold iterate of I when n is a positive integer, and
equal the n-fold iterate of I−1 when n is a negative integer. This is true and is
an immediate consequence of the following result.

Theorem 1. Let α, β be complex numbers. Then

Iα ◦ Iβ = Iα+β .

Proof. The result is obviously true when either α = 0 or β = 0 and is
straightforward to verify when α+ β = 0. From now on we assume that α, β
and α+ β are all non-zero.

Let f(x) = 1 + f1x+ f2x
2 + f3x

3 + · · · be a formal power series and de�ne

g(x) =
1

x
Rev

(
x

fβ(x)

)
. (5)

From the de�nition (4) of the fractional inversion operator we have

Iβ(f(x)) =

(
1

x
Rev

(
x

fβ(x)

)) 1
β

= g
1
β (x).
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Hence

Iα
(
Iβ(f(x)

)
= Iα

(
g

1
β (x)

)
=

(
1

x
Rev

(
x

g
α
β (x)

)) 1
α

. (6)

If we put

h(x) =
1

x
Rev

(
x

g
α
β (x)

)
(7)

then (6) reads

Iα
(
Iβ(f(x)

)
= h

1
α (x). (8)

Again, by the de�nition of the fractional inversion operator, we have

Iα+β(f(x)) =

(
1

x
Rev

(
x

fα+β(x)

)) 1
α+β

. (9)

If we put

H(x) =
1

x
Rev

(
x

fα+β(x)

)
(10)

then (9) becomes

Iα+β(f(x)) = H(x)
1

α+β . (11)

Comparing (8) and (11), the proof that Iα ◦ Iβ = Iα+β will be established if
we can show

h(x)
1
α = H(x)

1
α+β . (12)

Now from (5), the power series xg(x) is the inverse of x/fβ(x), which leads to
the functional equation

g

(
x

fβ(x)

)
= fβ(x)

or equivalently

g
1
β

(
x

fβ(x)

)
= f(x). (13)

Similarly, from (7) we �nd that the power series h(x) satis�es the functional
equation

h
1
α

(
x

g
α
β (x)

)
= g

1
β (x) (14)
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while from (10), the power series H(x) satis�es the functional equation

H
1

α+β

(
x

fα+β(x)

)
= f(x). (15)

In (14), replace x with x
fβ(x)

and then use (13) to �nd that h satis�es

h
1
α

(
x

fα+β(x)

)
= f(x). (16)

Thus from (15) and (16) we have

H
1

α+β (x) = f

(
Rev

(
x

fα+β(x)

))
= h

1
α (x),

proving (12) and completing the proof of the Theorem. �

Corollary 1. Let α, β be complex numbers. The operators Iα and Iβ
commute

Iα ◦ Iβ = Iβ ◦ Iα.

Corollary 2. For a positive integer n, the operator In equals the n-fold
iterate of I and the operator I−n equals the n-fold iterate of I−1.

In = I ◦ . . . ◦ I (n factors)

I−n = I−1 ◦ . . . ◦ I−1 (n factors)

Exercise 1. Let R denote the reciprocation operator: R : f(x)→ 1/f(x).
Show R ◦ Iα and Iα ◦R are both idempotent operators.

Exercise 2. Show Theorem 1 has the following generalization: Let
f(x) = 1 + f1x+ f2x

2 + f3x
3 + · · · be a formal power series. Let α, β, r be

complex numbers. Then

Iα
((
Iβ(f)

)r)
=

(
Irα+β(f)

)r
.

Corollary 2 reveals the surprising property of the inversion operator I that its
n-th iterate can be calculated from a single application of I. The next result
gives an alternative way of computing In(f(x)) that also requires only a single
application of I.
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Theorem 2. Let f(x) = 1 + f1x+ f2x
2 + f3x

3 + ... be a formal power series.
Let n be a positive integer. Then

(i)

In(f(x)) = [I(f(xn))]
x→x

1
n

(ii)

I−n(f(x)) =
[
I−1(f(xn))

]
x→x

1
n

Proof. We prove (i), the proof of (ii) being exactly similar.

The claim is that In(f(x)) is obtained from I(f(xn)) (a power series in xn) on
replacing x with x

1
n .

Let G(x) = In(f(x)) and H(x) = I(f(xn)). We show G(x) = H
(
x

1
n

)
.

By de�nition (4) of the fractional inversion operator we have

G(x) =

(
1

x
Rev

(
x

fn(x)

)) 1
n

. (17)

It follows that xGn(x) is the series reversion of x/fn(x), and consequently

xGn(x)

fn (xGn(x))
= x.

Thus G(x) satis�es the functional equation

G(x) = f (xGn(x)) . (18)

Moreover, this functional equation determines G(x) in terms of f(x) because,
starting from (18), we can reverse the above steps to �nd G(x) is given by (17).

It follows from H(x) = I(f(xn)) that xH(x) is the series reversion of x/f(xn),
and hence

xH(x)

f (xnHn(x))
= x

giving

H(x) = f (xnHn(x)) .

Thus

H
(
x

1
n

)
= f

(
xHn

(
x

1
n

))
. (19)

Comparing (18) and (19) we see that G(x) and H(x
1
n ) satisfy the same

functional equation, which, as we noted above, has a unique solution in terms
of f(x). Consequently G(x) = H(x

1
n ). �
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We turn our attention to the series expansion of It (f(x)) and its powers. We
shall need the following version of the Lagrange-Bürmann formula for formal
power series (see [1, Theorem 1.2.4] or [5]): If
f(x) = 1 + f1x+ f2x

2 + f3x
3 + · · · and H(x) = h0 + h1x+ h2x

2 + h3x
3 + · · ·

are formal power series and G(x) = Rev
(

x
f(x)

)
then

[xn]H(G(x)) =
1

n

[
xn−1

]
H

′
(x)f(x)n, for n, k > 0.

Theorem 3. Let

f(x) = 1 + f1x+ f2x
2 + f3x

3 + · · ·

be a formal power series and let

f(x)t =
∑
n≥0

pn(t)x
n,

where pn(t) is a family of convolution polynomials. Then for r ∈ C,

(i)

(It(f(x)))r =
∑
n≥0

r

nt+ r
pn(nt+ r)xn

(The denominator nt+ r cancels with the corresponding factor in the
numerator polynomial pn(nt+ r), so no problem arises if nt+ r is zero.)

(ii)

log
(
It(f(x))

)
=
∑
n≥1

1

nt
pn(nt)x

n.

Proof. (i) The result is clearly true if t = 0. Assume now t is nonzero. By
de�nition

It(f(x)) =

(
1

x
Rev

(
x

f(x)t

)) 1
t

.

Let g(x) = (It(f(x)))t so that

xg(x) = Rev

(
x

f(x)t

)
.

Now apply the Lagrange-Bürmann formula with H(x) = xk, k > 0 to obtain

[xn] (xg(x))
k

=
1

n
[xn−1]kxk−1f(x)nt
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or equivalently

[xn−k] (g(x))
k

=
k

n
[xn−k]f(x)nt.

Replace n with n+ k to get

[xn] (g(x))
k

=
k

n+ k
[xn]f(x)(n+k)t

=
k

n+ k
pn((n+ k)t).

Thus we have the series expansion

g(x)k = (It(f(x)))kt =
∑
n≥0

k

n+ k
pn((n+ k)t)xn. (20)

Equation (20) has been derived on the assumption that k is a positive integer
but also holds for arbitrary complex k, since when k is a complex number the
coe�cients of g(x)k are polynomials in k that equal the polynomials
k

n+kpn((n+ k)t) for in�nitely many values of k and so must be identically
equal polynomials.

Let r ∈ C and set k = r/t in (20) to �nd

(It(f(x)))r =
∑
n≥0

r

nt+ r
pn(nt+ r)xn. (21)

In particular,

It(f(x)) =
∑
n≥0

1

nt+ 1
pn(nt+ 1)xn

(ii) It follows from (21) that

log
(
It(f(x))

)
= lim

r→0

It(f(x))r − 1

r

=
∑
n≥1

1

nt
pn(nt)x

n. �

One consequence of Theorem 3 (i) is that if pn(t) is a family of convolution
polynomials then qn(r) :=

r
nt+rpn(nt+ r), regarded as polynomials in the

variable r, is another family of convolution polynomials [2, pp. 15-16].
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Theorem 3 coupled with Exercise 2 allows us to write down the e�ect of the
fractional inversion operator Is applied to powers of It(f(x)):

Is
((
It(f(x))

)r)
=

(
Irs+t(f(x))

)r
=

∑
n≥0

r

n(rs+ t) + r
pn(n(rs+ t) + r)xn.

We conclude by looking at two classical families of series which may be de�ned
using the fractional inversion operator.

Example 2. Take f(x) = 1 + x. Let Bt(x) denote the power series

It(f(x)) = It(1 + x). Now f(x)t =
∑
n≥0

(
t

n

)
xn, so in this case pn(t) =

(
t
n

)
is a

falling factorial polynomial. Theorem 3 gives the expansion

Bt(x) =
∑
n≥0

1

nt+ 1

(
nt+ 1

n

)
xn (22)

with powers given by

Bt(x)r =
∑
n≥0

r

nt+ r

(
nt+ r

n

)
xn. (23)

Also

log (Bt(x)) =
∑
n≥1

1

nt

(
nt

n

)
xn.

This latter series (with t replaced by 1 + t) is the exponential generating
function for A056856.

The series Bt(x) are called generalized binomial series and have a long history
dating back to Lambert. See [2, Section 5.4 and Section 7.5] and A251592. For
an alternative approach to proving (23), avoiding the Lagrange-Bürmann
formula and using only basic calculus, see 'The power series for the inverse
function of y(1-y)^t' by N. D. Elkies, available online at http://www.math.
harvard.edu/~elkies/Misc/catalan.pdf.

Example 3. Takef(x) = ex. Let Et(x) denote the power series
It(f(x)) = It(ex). We have f(x)t = ext =

∑
n≥0

tn
xn

n!
, so in this case pn(t) = tn

is a monomial. Theorem 3 gives the expansion

Et(x) =
∑
n≥0

(nt+ 1)n−1
xn

n!
. (24)

In the particular case t = 0 we have E0(x) = ex. Graham et al. [2, Section 5.4]
call Et(x) a generalized exponential series. See A139526.
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The powers of the generalized exponential series may also be written down

Et(x)r =
∑
n≥0

r(nt+ r)n−1
xn

n!
. (25)

Furthermore,

log (Et(x)) =
∑
n≥1

(nt)n−1
xn

n!
. (26)

In particular,

log (E1(x)) =
∑
n≥1

nn−1
xn

n!
(27)

is Euler's tree function. See A000169.
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