OFFSET
0,3
FORMULA
G.f. satisfies:
(1) A(x) = Sum_{n>=0} A(x)^(n^2) * x^n / (1-x + x*A(x)^n)^(n+1).
(2) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (A(x)^k - 1)^k.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 17*x^4 + 70*x^5 + 325*x^6 +...
where we have the identities:
(0) A(x) = 1/(1-x) + (A(x)-1)*x/(1-x)^2 + (A(x)^2-1)^2*x^2/(1-x)^3 + (A(x)^3-1)^3*x^3/(1-x)^4 + (A(x)^4-1)^4*x^4/(1-x)^5 + (A(x)^5-1)^5*x^5/(1-x)^6 +...
(1) A(x) = 1 + A(x)*x/(1-x + x*A(x))^2 + A(x)^4*x^2/(1-x + x*A(x)^2)^3 + A(x)^9*x^3/(1-x + x*A(x)^3)^4 + A(x)^16*x^4/(1-x + x*A(x)^4)^5 + A(x)^25*x^5/(1-x + x*A(x)^5)^6 + A(x)^36*x^6/(1-x + x*A(x)^6)^7 +...
(2) A(x) = 1 + x*(1 + (A(x)-1)) + x^2*(1 + 2*(A(x)-1) + (A(x)^2-1)^2) + x^3*(1 + 3*(A(x)-1) + 3*(A(x)^2-1)^2 + (A(x)^3-1)^3) + x^4*(1 + 4*(A(x)-1) + 6*(A(x)^2-1)^2 + 4*(A(x)^3-1)^3 + (A(x)^4-1)^4) + x^5*(1 + 5*(A(x)-1) + 10*(A(x)^2-1)^2 + 10*(A(x)^3-1)^3 + 5*(A(x)^4-1)^4 + (A(x)^5-1)^5) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, (A^m - 1)^m * x^m / (1-x +x*O(x^n) )^(m+1) )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, A^(m^2) * x^m / (1-x + x*A^m +x*O(x^n) )^(m+1) )); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m * sum(k=0, m, binomial(m, k) * (A^k - 1)^k +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 19 2015
STATUS
approved