[go: up one dir, main page]

login
A250266
Number of permutations p of [n] such that p(i) > p(i+1) iff i == 1 (mod 10).
2
1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 109, 768, 3627, 13636, 43665, 123744, 318223, 755802, 1679581, 3527140, 70542781, 878845662, 7113969943, 44573747024, 231938007625, 1043938332476, 4176060103827, 15138650342428, 50462774778029, 156435448534980
OFFSET
0,4
LINKS
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=1, add(b(u-j, o+j-1, irem(t+1, 10)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 10)), j=1..o)))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..35);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 1, Sum[b[u - j, o + j - 1, Mod[t + 1, 10]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 10]], {j, 1, o}]]];
a[n_] := b[0, n, 0];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 22 2019, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A250261.
Sequence in context: A111705 A071274 A258373 * A357936 A085908 A376280
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 15 2014
STATUS
approved