[go: up one dir, main page]

login
A249486
Nonprime numbers n such that sigma(n) + n is prime.
1
1, 4, 8, 16, 21, 27, 35, 36, 55, 57, 63, 64, 65, 75, 77, 85, 98, 100, 111, 119, 125, 128, 133, 143, 144, 155, 161, 171, 183, 189, 203, 205, 209, 215, 235, 237, 242, 243, 245, 253, 259, 275, 291, 301, 305, 323, 324, 333, 335, 338, 343, 351, 355, 365, 377, 391
OFFSET
1,2
COMMENTS
Complement of A005384 (Sophie Germain primes) with respect to A078762 (numbers n such that n + sigma(n) is prime).
EXAMPLE
Number 8 is in sequence because sigma(8)+8 = 15+8 = 23 (prime).
MAPLE
select(n -> not isprime(n) and isprime(n + numtheory:-sigma(n)), [$1..1000]); # Robert Israel, Nov 13 2014
MATHEMATICA
Select[Range[500], PrimeQ[DivisorSigma[1, #] + #]&& !PrimeQ[#] &] (* Vincenzo Librandi, Nov 14 2014 *)
PROG
(Magma) [n: n in[1..10000] | IsPrime(SumOfDivisors(n)+ n) and not IsPrime(n) ]
(PARI) print1(1, ", "); forcomposite(n=1, 1000, if(isprime(sigma(n)+n), print1(n, ", "))) \\ Derek Orr, Nov 13 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaroslav Krizek, Nov 13 2014
STATUS
approved