OFFSET
0,2
COMMENTS
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x+3)^0 + A_1*(x-3)^1 + A_2*(x+3)^2 + A_3*(x-3)^3 + ... + A_n*(x+3*(-1)^n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
EXAMPLE
Triangle starts:
1;
4, 1;
-23, -5, 1;
-320, -86, 10, 1;
4297, 1102, -152, -11, 1;
92020, 24187, -3122, -281, 16, 1;
-1922207, -502151, 66133, 5659, -389, -17, 1;
-55746464, -14601740, 1908316, 167254, -10784, -584, 22, 1;
1589338993, 415992316, -54490040, -4745234, 312406, 16048, -734, -23, 1;
...
PROG
(PARI) a(n, j, L)=if(j==n, return(1)); if(j!=n, return(1-sum(i=1, n-j, (-L)^i*(-1)^(i*j)*binomial(i+j, i)*a(n, i+j, L))))
for(n=0, 10, for(j=0, n, print1(a(n, j, 3), ", ")))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Oct 23 2014
STATUS
approved