[go: up one dir, main page]

login
A249233
T(n,k)=Number of length n+5 0..k arrays with no six consecutive terms having two times the sum of any two elements equal to the sum of the remaining four
14
42, 486, 62, 2772, 972, 92, 10620, 7736, 1944, 136, 32070, 36880, 21648, 3888, 200, 81402, 133270, 128436, 60744, 7776, 292, 183696, 400152, 556024, 448148, 170928, 15552, 422, 376752, 1044612, 1974784, 2325864, 1566052, 482388, 31104, 612
OFFSET
1,1
COMMENTS
Table starts
...42....486.....2772.....10620.......32070........81402........183696
...62....972.....7736.....36880......133270.......400152.......1044612
...92...1944....21648....128436......556024......1974784.......5967084
..136...3888....60744....448148.....2325864......9772492......34184700
..200...7776...170928...1566052.....9746100.....48456384.....196210998
..292..15552...482388...5479172....40881292....240606388....1127486210
..422..31104..1365524..19188990...171561694...1195936390....6483080144
..612..62208..3889132..67392884...720180558...5953728172...37310369094
..900.124416.11085704.236812732..3023733498..29645835078..214752404734
.1328.248832.31624832.832339890.12696930054.147647019270.1236199073642
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-3) +a(n-4) +a(n-5) +3*a(n-6) +2*a(n-7) +a(n-8) -2*a(n-9) -3*a(n-10) -2*a(n-11) -a(n-12) -a(n-13) +a(n-15) +a(n-16)
k=2: a(n) = 2*a(n-1)
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-2) -3*a(n-3) +6*a(n-4) -6*a(n-7) +3*a(n-8) +4*a(n-9) -4*a(n-10) +a(n-11) also a polynomial of degree six plus a linear quasipolynomial with period 6
EXAMPLE
Some solutions for n=3 k=4
..1....3....2....3....0....1....0....0....0....2....2....3....1....1....4....2
..4....0....3....1....3....2....3....1....1....3....4....1....3....1....0....0
..1....4....3....3....4....3....0....4....0....0....0....0....3....1....0....0
..4....0....0....4....2....0....1....1....2....4....0....1....3....4....0....3
..0....0....3....1....4....2....0....4....1....3....1....0....3....2....3....1
..0....0....3....4....4....2....3....1....0....2....0....2....0....4....1....2
..0....0....4....4....2....4....1....0....4....1....0....3....3....2....4....4
..0....3....3....4....3....0....3....1....0....3....3....1....0....1....3....1
CROSSREFS
Column 1 is A248441
Sequence in context: A216113 A204566 A348833 * A249234 A250324 A086944
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 23 2014
STATUS
approved