[go: up one dir, main page]

login
A248883
Expansion of Product_{k>=1} (1+x^k)^(k^4).
9
1, 1, 16, 97, 457, 2297, 11113, 52049, 235334, 1039886, 4497930, 19074006, 79418883, 325184763, 1311252535, 5212704708, 20449320159, 79231806015, 303428397505, 1149325838320, 4308477305997, 15993198330782, 58815616643170, 214383601754107, 774837953045873
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..3360 (terms 0..1000 from Vaclav Kotesovec)
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 22.
FORMULA
a(n) ~ 31^(1/12) * exp(1/5 * (31/7)^(1/6) * 6^(2/3) * Pi * n^(5/6)) / (2^(7/6) * 3^(2/3) * 7^(1/12) * n^(7/12)).
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A284926(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(k*(1 - x^k)^5)). - Ilya Gutkovskiy, May 30 2018
MAPLE
b:= proc(n) option remember; add(
(-1)^(n/d+1)*d^5, d=numtheory[divisors](n))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(k)*a(n-k), k=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Oct 16 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^4), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) x = 'x + O('x^50); Vec(prod(k=1, 50, (1 + x^k)^(k^4))) \\ Indranil Ghosh, Apr 06 2017
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^4: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
CROSSREFS
Column k=4 of A284992.
Sequence in context: A041488 A277225 A265841 * A223902 A264580 A122102
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 05 2015
STATUS
approved