[go: up one dir, main page]

login
A247903
Start with a single square; at n-th generation add a square at each expandable vertex (this is the "vertex to side" version); a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)
7
1, 5, 13, 29, 53, 93, 149, 237, 357, 541, 789, 1165, 1669, 2429, 3445, 4973, 7013, 10077, 14165, 20301, 28485, 40765, 57141, 81709, 114469, 163613, 229141, 327437, 458501, 655101, 917237, 1310445, 1834725, 2621149, 3669717, 5242573, 7339717, 10485437
OFFSET
0,2
COMMENTS
Refer to A247618, which is the "vertex to vertex" expansion version. For this case, the expandable vertices of the existing generation will contact the sides of the new ones i.e."vertex to side" expansion version. Let us assign the label "1" to the square at the origin; at n-th generation add a square at each expandable vertex, i.e. each vertex where the added generations will not overlap the existing ones, although overlaps among new generations are allowed. The non-overlapping squares will have the same label value as a predecessor; for the overlapping ones, the label value will be sum of label values of predecessors. a(n) is the sum of all label values at n-th generation. The squares count is A001844. See illustration ("vertex to side" is equal to "side to vertex"). For n >= 1, (a(n) - a(n-1))/4 is A027383.
FORMULA
a(0) = 1, for n >= 1, a(n) = 4*A027383(n) + a(n-1).
a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +2*a(n-4). - Colin Barker, Sep 26 2014
G.f.: (1+3*x+2*x^2+2*x^3)/((1-x)^2*(1-2*x^2)). - Colin Barker, Sep 26 2014
A(n) = 2^(n/2+1)*((1+sqrt(2))^3 + (-1)^n*(1-sqrt(2))^3) - (8*n + 27). - G. C. Greubel, Feb 18 2022
MATHEMATICA
LinearRecurrence[{2, 1, -4, 2}, {1, 5, 13, 29}, 51] (* G. C. Greubel, Feb 18 2022 *)
PROG
(PARI)
{
b=0; a=1; print1(1, ", ");
for (n=0, 50,
b=b+2^floor(n/2);
a=a+4*b;
print1(a, ", ")
)
}
(PARI)
Vec(-(2*x^3+2*x^2+3*x+1) / ((x-1)^2*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
(Magma) [2^(n/2+1)*((7+5*Sqrt(2)) + (-1)^n*(7-5*Sqrt(2))) -(8*n+27): n in [0..50]]; // G. C. Greubel, Feb 18 2022
(Sage) [2*2^(n/2)*((7+5*sqrt(2)) +(-1)^n*(7-5*sqrt(2))) -(8*n+27) for n in (0..50)] # G. C. Greubel, Feb 18 2022
CROSSREFS
Vertex to vertex version: A061777, A247618, A247619, A247620.
Vertex to side version: A101946, A247904, A247905.
Sequence in context: A106931 A078370 A308464 * A350687 A240130 A005473
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Sep 26 2014
EXTENSIONS
More terms from Colin Barker, Sep 26 2014
STATUS
approved