[go: up one dir, main page]

login
A247895
Least integer k > 0 such that prime(k) - k*n is prime.
3
3, 7, 13, 31, 69, 190, 444, 1052, 2702, 6455, 15928, 40073, 100370, 251707, 637321, 1617175, 4124448, 10553415, 27066978, 69709680, 179992909, 465769803, 1208198532, 3140421716, 8179002120, 21338685408, 55762149030, 145935689361, 382465573486, 1003652347100
OFFSET
1,1
COMMENTS
Conjecture: (i) a(n) exists for any n > 0.
(ii) For each integer n > 2, there is a positive integer k with k*n - prime(k) prime.
LINKS
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685 [math.NT], 2014-2017.
EXAMPLE
a(1) = 3 since prime(3) - 3*1 = 5 - 3 = 2 is prime.
MATHEMATICA
Do[k=1; Label[aa]; If[Prime[k]>k*n&&PrimeQ[Prime[k]-k*n], Print[n, " ", k]; Goto[bb]]; k=k+1; Goto[aa]; Label[bb]; Continue, {n, 1, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 28 2014
EXTENSIONS
Terms a(23) and beyond from Giovanni Resta, Apr 22 2020
STATUS
approved