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Abstract. We count solutions to the Ramanujan-Nagell equation 2y+n = x2

for fixed positive n.

The computational strategy is to count the solutions separately for even
and odd exponents y, and to handle the odd case with modular residues for

most cases of n.

1. Scope

We consider the number of ways to represent n > 0 as

(1) n = x2 − 2y,

for pairs of the non-negative unknowns x and y. Equivalently we count the y such
that

(2) n+ 2y = x2

are perfect squares.

Remark 1. For n = 0 the number of solutions is infinite because each even value
of y creates one solution.

The n for which the count is nonzero end up in [8, A051204].

Remark 2. Negative n for which solutions exists are listed in [8, A051213] [4, 2].

The solutions are counted separately for even y and odd y and added up. The
total count is at most 4 [6].

2. Even Exponents y

Counting the squares x2 of the format (2) considering only even y is basically a
matter of considering the values y = 0, 2, 4, . . . in turn and checking explicitly each
y2 + n against being a square. An upper limit to the y is determined as follows:

• The y-values in the range 2y < n are all checked individually.
• For larger y the values of 2y +n on the left hand side of (2) are represented

in binary by some most significant bit contributed by 2y and—after a train
of zero bits depending of how much larger 2y is than n—the trailing bits
of n. A lower exact bound of the x on the right hand side is x = 2y/2,
contributing to the count if n were zero. So the next higher candidate on
the right hand side is (x+1)2 = (2y/2+1)2 = 2y+21+y/2+1. If this value is
larger than the left hand side 2y +n, there are no further solutions because
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n is so small that it falls into the gap between consecutive squares. In
summary, the search range for this branch of the algorithm can be reduced
to 21+y/2 + 1 ≤ n.

The sequence of the number of representations of n ≥ 1 with even y (i.e., the
number of representations n = x2 − 4y) is 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,. . . .

The smallest n which has r representations of the form n = x2−4y is the greedy
inverse of this sequence, which is n = 1 for r = 0, n = 3 for r = 1, n = 33 for r = 2,
n = 105 for r = 3 and n = 1680 for r = 4. There are no n for r ≥ 5 [6].

3. Odd Exponents y

The count of solutions to (2) with odd y is split into cases (i) for n being multiples
of 4, (ii) n represented by at least one modulus m such that an upper limit of y is
found by considering the equation modulo m, and (iii) other (discriminants) n that
apparently do not fall into these categories.

3.1. n which are multiples of 4. If 4 | n in (2) for odd y = 2yo + 1, the left
hand side is even, so the right hand side and x = 2xe must also be even. Then
considering the equation modulo 4, the case yo = 0 cannot yield a solution, and one
may divide each term of the equation by 4. This reduces recursively the number of
solutions to the number of solutions for n/4.

3.2. n with associated moduli. The sequences 2y + n = 22ye+1 + n (ye =
0, 1, 2, . . .) and x2 (x = 0, 1, 2, . . .) on both sides of (2) have generating functions
which are rational functions and therefore have Pisano periods if read reduced some
modulus m [7, 10, 11].

Remark 3. For the sequence x2 [8, A000290] the length of the Pisano periods is
tabulated in [8, A186646] as a function of m. For polynomial sequences like x2,
the period length is obviously limited to m and always a divisor of m. Discarding
duplicates in the period, the number of squares modulo m is also finite [8, A000224].

Remark 4. If 2 and m are coprime, the length of the Pisano period of 2y is the
multiplicative order of 2 (mod m) [8, A002326].

The sequences 2y + n (mod m) generally start with a transient list of moduli at
small y before entering the period.

Example 1. The sequence 2y (mod 68) reads 1, 2, 4, 8, 16, 32, 64, 60, 52, 36, 4,
8, 16, 32, 64, 60, 52, . . . for y ≥ 0 with a transient part containing 1 and 2 and a
periodic part containing 4, 8, 16, 32, 64, 60, 52, 36.

The computational strategy is to find a modulus m given n such that the two
periods of 22ye+1 + n (mod m) and of x2 (mod m) have no common element. If
such a modulus m is found, the length of the transient part of the 2y + n residua
defines the maximum exponent y that needs to be searched, because for all larger
y the moduli of both sides of (2) are distinct.

Remark 5. There is no transient part in the residua of the polynomials like x2.
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Cases of a search form for some small n are illustrated in Table 1. Only successful
m are listed, as indicated by distinct sets of moduli in the penultimate and ultimate
column in the table. Cases where n is a multiple of 4 are left out because the
reduction of Section 3.1 makes them uninteresting.

Remark 6. Chosing m = 3 works if 3 | n because 2y (mod 3) = 1, 2, . . . (y ≥ 0)
and because x2 (mod 3) = 0, 1, 1, . . ., (x ≥ 0) both periodically repeated. Since we
are considering only odd y, the set of residua contains {2} for 2y and {0, 1} for x2,
and these do not intersect.

The cases of odd n which are not in the table are apparently not accessible by
the method of residue and are discussed in Section 3.3.

Note that a shortcut exists for n which are two times an odd number, n = 2no.
Then 2y +n = 22yo+1 + 2no = x2 requires x to be even, x = 2xe, so 22yo+1 + 2no =
4x2e and 22yo + no = 2x2e. Since the right hand side is even, the left hand side is
even which requires 22yo to be odd and yo = 0 or no solution at all. This is decided
by direct inspection. (See [8, A056220] for the no that do have a solution.)

3.3. Other n. For n = 1, 17, 41, 49, 73, 89, . . . no such modulus m has been found
that separates the residue sets of 2y +n and x2. These n are discussed individually
[9]:

• For n = 1 only the solution with y = x = 3 exists [1].
• For n = 17 the maximum number of 4 solutions [5, 9] is known, represented

by (x, y) = (5, 3), (7, 5), (9, 6) and (23, 9). (One of these is created by an
even y and already counted in Section 2.)
• For n = 41 we have (x, y) = (7, 3) or (13, 7). Because 41 is in [8, A031396],

the associated equation u2 − 41v2 = −1 has solutions (explicit u = 32 in
[8, A249021]). and according to Le’s second theorem [5] there are no more
than 2 solutions.
• For n = 49 we have (x, y) = (9, 5). This is the only solution. [Proof: Solving

2y + 49 = x2 for y ≥ 1 needs odd x by considering the parity of both sides.
So this is 2y = (x + 7)(x − 7) where x ± 7 are both even. Furthermore
comparison of the prime factorization of both sides enforces that x± 7 are
powers of 2, say x − 7 = 2α, x + 7 = 2α+δ. Subtraction of both equations
gives 14 = 2α(2δ − 1) = 2 · 7. Necessarily α = 1, β = 3 and finally x = 9.
See [3].]
• For n = 73 we have (x, y) = (9, 3). This is the only solution [9]
• For n = 89 we have (x, y) = (11, 5) or (91, 13). Again 89 is in [8, A031396]

and these are all solutions according to Le’s second theorem [5].
• For n = 97 we have (x, y) = (15, 7) as the only solution [9].
• For n = 113 we have (x, y) = (11, 3) or (25, 9). Again 113 is in [8, A031396]

and these are all solutions according to Le’s second theorem [5].
• For n = 161 the maximum number of 4 solutions [5] is known, represented

by (x, y) = (13, 3), (15, 6), (17, 7) and (47, 11). (One of these is created by
an even y and already counted in Section 2.)
• For n = 833 the maximum number of 4 solutions [5] is known, represented

by (x, y) = (29, 3), (31, 7), (33, 8) and (95, 13). (One of these is created by
an even y and already counted in Section 2.)
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Table 1. Examples of the dividing property of moduli m for small
n, odd y. The double column entitled 2y + n shows the transient
values of 2y +n (mod m) and the values of 2y +n (mod m) in the
period. The column entitled x2 shows the period of x2 (mod m)
(of length m, not necessarily reduced to the smallest subperiod).

n m π(2y + n) π(x2)
2 4 0 2 0 1 0 1
3 3 2 0 1 1
5 5 2 3 0 1 4 4 1
6 3 2 0 1 1
7 4 1 3 0 1 0 1
9 3 2 0 1 1

10 4 0 2 0 1 0 1
11 4 1 3 0 1 0 1
13 8 7 5 0 1 4 1 0 1 4 1
14 4 0 2 0 1 0 1
15 3 2 0 1 1
18 3 2 0 1 1
19 4 1 3 0 1 0 1
21 3 2 0 1 1
22 4 0 2 0 1 0 1
23 4 1 3 0 1 0 1
25 5 2 3 0 1 4 4 1
26 4 0 2 0 1 0 1
27 3 2 0 1 1
29 8 7 5 0 1 4 1 0 1 4 1
30 3 2 0 1 1
31 4 1 3 0 1 0 1
33 3 2 0 1 1
34 4 0 2 0 1 0 1
35 4 1 3 0 1 0 1
37 8 7 5 0 1 4 1 0 1 4 1
38 4 0 2 0 1 0 1
39 3 2 0 1 1
42 3 2 0 1 1
43 4 1 3 0 1 0 1
45 3 2 0 1 1
46 4 0 2 0 1 0 1
47 4 1 3 0 1 0 1
50 4 0 2 0 1 0 1
51 3 2 0 1 1
53 8 7 5 0 1 4 1 0 1 4 1
54 3 2 0 1 1
55 4 1 3 0 1 0 1
57 3 2 0 1 1
58 4 0 2 0 1 0 1
59 4 1 3 0 1 0 1
61 8 7 5 0 1 4 1 0 1 4 1
62 4 0 2 0 1 0 1
63 3 2 0 1 1
65 5 2 3 0 1 4 4 1
66 3 2 0 1 1
67 4 1 3 0 1 0 1
69 3 2 0 1 1
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2α5β17γ = yn, Commun. Math. 20 (2012), no. 2, 81–88. MR 3032806

5. Maohua Le, On the number of solutions of the generalized Ramanujan-Nagell equation x2 −
d = 2n+2, Acta Arithm. 60 (1991), no. 2, 149–167. MR 1139052

6. , A note on the number of solutions of the generalized Ramanujan-Nagell equation

x2 − d = kn, Acta Arithm. 78 (1996), no. 1, 11–18. MR 1424998
7. D. W. Robinson, A note on linear reccurent sequences modulo m, Am. Math. Monthly 73

(1966), no. 6, 619–621. MR 0201376

8. Neil J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, Notices Am. Math. Soc.
50 (2003), no. 8, 912–915, http://oeis.org/. MR 1992789 (2004f:11151)

9. Nicholas Tzanakis, On the diophantine equation y2 − d = 2k, J. Number Theory 17 (1983),

no. 2, 144–164.
10. Morgan Ward, The characteristic number of a sequence of integers satisfying a linear recur-

sion relation, Trans. Am. Math. Soc. 33 (1931), no. 1, 153–165. MR 1501582

11. , The arithmetical theory of linear recurring series, Trans. Am. Math. Soc. 35 (1933),

no. 3, 600–628. MR 1501705

URL: http://www.mpia.de/~mathar

Max-Planck Institute of Astronomy, Königstuhl 17, 69117 Heidelberg, Germany


	1. Scope
	2. Even Exponents y
	3. Odd Exponents y
	3.1. n which are multiples of 4.
	3.2. n with associated moduli
	3.3. Other n

	References

