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We use the definition of  T(n, k) =  n + 1
k

-
k + 1

2
  for  1 ≤ n  and  1 ≤ k ≤  1

2
 8 n + 1 - 1 = row(n), and  

S(n, k) = T(n, k) - T(n, k + 1)  from A237591 and A237593, respectively.  Observe that  T(n, 1) = n.
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Let  n, i, p ∈ ℕ  where  i ≥ 1  and  p ≥ 3.  Equivalent are:

(1) n = 2i-1⨯ p2, where  2i < p  and  p  is a prime.

(2) (i) 2i < p ≤ row(n) < 2

i

2

⨯ p ≤ 2i ⨯ p,

(ii) T(n, 2i) = T(n - 1, 2i) + 1,
(iii) T(n, p)  = T(n - 1, p) + 1,

(iv) for all  k ≠ 2i, p  with  1 < k ≤ row(n),  T(n, k) = T(n - 1, k),

(v) T(n, 1) - T(n, 2i) = 1
2
⨯2i - 1⨯p2 + 1.
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The symmetric representation of  σ(n)  consists of three regions of width 1 where the two extremal 

regions each have  2k - 1  legs and the central region starts with the p-th leg of the associated Dyck 

path for  σ(n)  precisely when  n = 2k-1⨯ p2  where  n, k, p ∈ ℕ, k ≥ 1, p ≥ 3 is a prime, and  2k  < p ≤ 

row(n).  Furthermore, the areas of the two outer regions are  1
2
⨯2k - 1⨯p2 + 1  each so that the area 

of the central region is  2k - 1⨯p. 
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Properties (2.i), (2.ii), (2.iii) and (2.v) are easily established by direct computations.

(2.iv) For any  1 < k ≤ row(n), let  n = q ⨯ k + d  with  q, k, d ∈ ℕ  and 0 ≤ d < k.
If  k  is odd and  k ≠ p, then  k  does not divide  n  so that  0 < d < k, i.e., T(n, k)  = T(n - 1, k).

If  k  is even and  k ≠ 2i, then the three cases 0 < d < k
2
, k
2
 < d < k

and  d = k
2
  need to be considered.  The first two follow from direct computations; when  d = k

2

then  2 ⨯ n = 2i ⨯ p2 = (2⨯q + 1) ⨯ k  so that  k = 2i, 2i ⨯ p  or  2i ⨯ p2.  The first possibility
contradicts the assumption on  k, and the other two cannot occur since by condition (2.i)

k ≤ row(n) < 2

i

2

⨯ p ≤ 2i ⨯ p < 2i ⨯ p2.

This establishes  T(n, k) = T(n - 1, k)  for all  k ≠ 2i, p  with  1 < k ≤ row(n).
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First, observe that assumption (2.i) insures that  T(n, 2i)  and  T(n, p)  are well defined.

Suppose that  n = q ⨯ 2i-1 + d  with  q, d ∈ ℕ  and  0 ≤ d < 2i-1.  From assumption (2.ii) we get:

Tn, 2i  = 
q⨯2i-1+ d + 1

2i
-
2i + 1

2
 =  

q - 1

2
+
d + 1

2i
 - 2i-1

Tn - 1, 2i  =  
q⨯2i-1+ d - 1 + 1

2i
-
2i + 1

2
 =  

q - 1

2
+
d

2i
 - 2i-1



so that  
q - 1

2
+
d + 1

2i
 = 

q - 1

2
+
d

2i
 + 1.  

If  q  is odd, then   d + 1
2i

 =  d

2i
 + 1, so that  d = 0.

If  q  is even, then  
q

2
 +  -1

2
+
d + 1

2i
 = 

q

2
 +  -1

2
+
d

2i
 + 1  requires  d = 2i-1, a contradiction.

Therefore, 2i-1 is a divisor of  n.

If  2i  divides  n, say  n = z ⨯ 2i  for some  z ∈ ℕ, then  

Tn, 2i =  z ⨯ 2
i + 1

2i
-
2i + 1

2
 = z - 2i-1 +  -1

2
+
1

2i
 = z - 2i-1

Tn - 1, 2i =  z ⨯ 2
i - 1 + 1

2i
-
2i + 1

2
 = z - 2i-1 +  -1

2
= z - 2i-1

which contradicts (2.ii) so that  2i - 1 is the largest power of two dividing  n.

Similarly, let  n = a ⨯ p + b  with  a, b ∈ ℕ  and  0 ≤ b < p  for an odd number  p.  Then the expressions 

T(n, p) = 
a ⨯ p + b + 1

p
-
p + 1

2
=  a - 

p + 1

2
 +  b + 1

p


T(n - 1, p) = 
a ⨯ p + b - 1 + 1

p
-
p + 1

2
= a - 

p + 1

2
 +  b

p


imply with (2.iii) that   b + 1
p

 =  b
p
 + 1  so that  b = 0.

Therefore, p  is a divisor of  n.  If  n  has a prime divisor  k ≤ row(n)  with  k ≠ p  then assumption (2.iv), 

T(n, k) = T(n - 1, k), implies   n + 1
k

 =  n
k
  which is a contradiction.  Therefore, p  is the only odd divisor 

less than  row(n)  and is a prime.  

Finally suppose that  n = s ⨯ p ⨯ 2i - 1  with  1 < s ∈ ℕ.  Then we get:

T(n, 1) - Tn, 2i  =  s ⨯ p ⨯ 2i - 1 - 
s ⨯ p ⨯ 2i - 1 + 1

2i
-
2i + 1

2
 

=  s ⨯ p ⨯ 2i - 1 -  
s ⨯ p - 1

2
  +  2i-1  -  1

2i
 =  1

2
⨯2i ⨯s⨯p - s⨯p + 1 + 2i - 2

=  1
2
⨯2i - 1⨯s⨯p + 2i - 1  =   1

2
⨯2i - 1⨯(s⨯p + 1) .

Now condition (2.v) leads to the following equation:
1

2
⨯2i - 1⨯(s⨯p + 1)  =  1

2
⨯2i - 1⨯p2 + 1.

In other words, s = p, and  n = 2i-1⨯ p2.
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The lengths of the segments in the symmetric Dyck paths that bound the first half of the symmetric 
representation of  σ(n)  are given by:  

S(n, k) = T(n, k)  - T(n, k + 1)  for  1 ≤ n  and  1 ≤ k ≤ row(n).

The three conditions (2.ii), (2.iii) & (2.iv) together with  T(n, 1) = n  and  2i < p  from condition (2.i) imply 

that the first region has width 1 and continues through  Sn, 2i - 1  and that the second region starts 

with leg  S(n, p), continues through the diagonal and also has width 1.

The difference  T(n, 1) - T(n, 2i)  equals the area of the first region so that the area of the central region 

is  2k - 1⨯p.

2 ���  three regions width one = 2^(k-1)*p(n)^2 proof.nb


