Notations

We use the definition of $T(n, k) = \left\lceil \frac{n+1}{k} - \frac{k+1}{2} \right\rceil$ for $1 \le n$ and $1 \le k \le \left\lfloor \frac{1}{2} \left(\sqrt{8n+1} - 1 \right) \right\rfloor$ = row(n), and $S(n, k) = T(n, k) - T(n, k + 1)$ from A237591 and A237593, respectively. Observe that $T(n, 1) = n$.

Lemma

Let n, i, $p \in \mathbb{N}$ where i ≥ 1 and $p \ge 3$. Equivalent are:

- (1) $n = 2^{i-1} \times p^2$, where 2^i < p and p is a prime.
- (2) (i) $2^{i} < p \le row(n) < 2^{\left\lceil \frac{i}{2} \right\rceil} \times p \le 2^{i} \times p$,
	- (ii) $T(n, 2^i) = T(n 1, 2^i) + 1$,
	- (iii) $T(n, p) = T(n 1, p) + 1$
	- (iv) for all $k \neq 2^i$, p with $1 \leq k \leq row(n)$, $T(n, k) = T(n 1, k)$,
	- (v) $T(n, 1) T(n, 2^{i}) = \frac{1}{2} \times (2^{i} 1) \times (p^{2} + 1).$

Theorem

The symmetric representation of $\sigma(n)$ consists of three regions of width 1 where the two extremal regions each have $2^k - 1$ legs and the central region starts with the p-th leg of the associated Dyck path for $\sigma(n)$ precisely when $n = 2^{k-1} \times p^2$ where n, k, $p \in \mathbb{N}$, $k \ge 1$, $p \ge 3$ is a prime, and $2^k < p \le 3$ row(n). Furthermore, the areas of the two outer regions are $\frac{1}{2} \times (2^k - 1) \times (p^2 + 1)$ each so that the area of the central region is $(2^k – 1) \times p$.

Proof of Lemma " $(I) \Rightarrow (2)$ "

Properties (2.i), (2.ii), (2.iii) and (2.v) are easily established by direct computations.

(2.iv) For any $1 \le k \le row(n)$, let $n = q \times k + d$ with $q, k, d \in \mathbb{N}$ and $0 \le d \le k$. If k is odd and $k \neq p$, then k does not divide n so that $0 \leq d \leq k$, i.e., $T(n, k) = T(n - 1, k)$. If k is even and $k \neq 2^i$, then the three cases $0 \leq d \leq \frac{k}{2}, \frac{k}{2} \leq d \leq k$

and $d = \frac{k}{2}$ need to be considered. The first two follow from direct computations; when $d = \frac{k}{2}$ then $2 \times n = 2^{i} \times p^{2} = (2 \times q + 1) \times k$ so that $k = 2^{i}$, $2^{i} \times p$ or $2^{i} \times p^{2}$. The first possibility contradicts the assumption on k, and the other two cannot occur since by condition (2.i) k ≤ row(n) < 2^{[$\frac{i}{2}$] _× p ≤ 2^{*i*} × p < 2^{*i*} × *p*².} This establishes $T(n, k) = T(n - 1, k)$ for all $k \neq 2^i$, p with $1 \leq k \leq row(n)$.

Proof of Lemma " $(2) \Rightarrow (1)$ "

First, observe that assumption (2.i) insures that $T(n, 2^i)$ and $T(n, p)$ are well defined. Suppose that $n = q \times 2^{i-1} + d$ with $q, d \in \mathbb{N}$ and $0 \leq d < 2^{i-1}$. From assumption (2.ii) we get: $T(n, 2^{i}) = \left[\frac{q \times 2^{i-1} + d + 1}{2^{i}} - \frac{2^{i} + 1}{2}\right] = \left[\frac{q-1}{2} + \frac{d+1}{2^{i}}\right] - 2^{i-1}$ $T(n-1, 2^i) = \left[\frac{q \times 2^{i-1} + d - 1 + 1}{2^i} - \frac{2^i + 1}{2} \right] = \left[\frac{q-1}{2} + \frac{d}{2^i} \right] - 2^{i-1}$

so that $\left[\frac{q-1}{2} + \frac{d+1}{2^i} \right] = \left[\frac{q-1}{2} + \frac{d}{2^i} \right] + 1.$ If q is odd, then $\left\lceil \frac{d+1}{2^i} \right\rceil = \left\lceil \frac{d}{2^i} \right\rceil + 1$, so that $d = 0$. If q is even, then $\frac{q}{2} + \left[\frac{-1}{2} + \frac{q+1}{2^i}\right] = \frac{q}{2} + \left[\frac{-1}{2} + \frac{q}{2^i}\right] + 1$ requires $d = 2^{i-1}$, a contradiction. Therefore, 2^{i-1} is a divisor of n. If 2^i divides n, say n = z × 2^{*i*} for some $z \in \mathbb{N}$, then $T(n, 2^{i}) = \left[\frac{z \cdot 2^{i} + 1}{2^{i}} - \frac{2^{i} + 1}{2}\right] = z - 2^{i-1} + \left[\frac{-1}{2} + \frac{1}{2^{i}}\right] = z - 2^{i-1}$ $T(n-1, 2^{i}) = \left[\frac{z \times 2^{i}-1+1}{2^{i}} - \frac{2^{i}+1}{2}\right] = z - 2^{i-1} + \left[\frac{-1}{2}\right] = z - 2^{i-1}$ which contradicts (2.ii) so that 2^{i-1} is the largest power of two dividing n. Similarly, let $n = a * p + b$ with $a, b \in \mathbb{N}$ and $0 \le b \le p$ for an odd number p. Then the expressions $T(n, p) = \left[\frac{a \times p + b + 1}{p} - \frac{p + 1}{2} \right] = a - \frac{p + 1}{2} + \left[\frac{b + 1}{p} \right]$ $T(n-1, p) = \left[\frac{a \times p + b - 1 + 1}{p} - \frac{p+1}{2}\right] = a - \frac{p+1}{2} + \left[\frac{b}{p}\right]$ imply with (2.iii) that $\left\lceil \frac{b+1}{p} \right\rceil = \left\lceil \frac{b}{p} \right\rceil + 1$ so that $b = 0$. Therefore, p is a divisor of n. If n has a prime divisor $k \le row(n)$ with $k \ne p$ then assumption (2.iv), T(n, k) = T(n - 1, k), implies $\left\lceil \frac{n+1}{k} \right\rceil = \left\lceil \frac{n}{k} \right\rceil$ which is a contradiction. Therefore, p is the only odd divisor less than row(n) and is a prime.

Finally suppose that
$$
n = s * p * 2^{i-1}
$$
 with $1 < s \in \mathbb{N}$. Then we get:
\n
$$
T(n, 1) - T(n, 2^{i}) = s * p * 2^{i-1} - \left[\frac{s * p * 2^{i-1} + 1}{2^{i}} - \frac{2^{i} + 1}{2} \right]
$$
\n
$$
= s * p * 2^{i-1} - \frac{s * p - 1}{2} + 2^{i-1} - \left[\frac{1}{2^{i}} \right] = \frac{1}{2} * (2^{i} * s * p - s * p + 1 + 2^{i} - 2)
$$
\n
$$
= \frac{1}{2} * ((2^{i} - 1) * s * p + (2^{i} - 1)) = \frac{1}{2} * (2^{i} - 1) * (s * p + 1).
$$
\nNow condition (2.v) leads to the following equation:
\n
$$
\frac{1}{2} * (2^{i} - 1) * (s * p + 1) = \frac{1}{2} * (2^{i} - 1) * (p^{2} + 1).
$$
\nIn other words, $s = p$, and $n = 2^{i-1} * p^{2}$.

Proof of Theorem

The lengths of the segments in the symmetric Dyck paths that bound the first half of the symmetric representation of $\sigma(n)$ are given by:

 $S(n, k) = T(n, k) - T(n, k + 1)$ for $1 \le n$ and $1 \le k \le row(n)$.

The three conditions (2.ii), (2.iii) & (2.iv) together with $T(n, 1) = n$ and $2^{i} < p$ from condition (2.i) imply that the first region has width 1 and continues through $S(n, 2^{i} - 1)$ and that the second region starts with leg $S(n, p)$, continues through the diagonal and also has width 1.

The difference $T(n, 1)$ - $T(n, 2^i)$ equals the area of the first region so that the area of the central region is $(2^k - 1) \times p$.