[go: up one dir, main page]

login
A247558
Smallest integer x > 0 such that the number of semiprimes in the interval (x/2, x] equals n.
1
4, 6, 10, 15, 25, 26, 35, 38, 39, 57, 58, 62, 65, 86, 87, 91, 94, 95, 121, 122, 123, 134, 142, 143, 145, 146, 159, 161, 169, 202, 203, 205, 206, 209, 214, 215, 217, 218, 219, 221, 262, 265, 278, 299, 301, 302, 303, 305, 309, 326, 327, 329, 335, 341, 346, 361, 362, 365, 382, 386, 393, 394, 395, 398
OFFSET
1,1
COMMENTS
Analogous to A080359: the Labos Elemer primes.
LINKS
EXAMPLE
a(6) = 26 because in the interval, (13, 26], {14, 15, 21, 22, 25, 26} are six semiprimes.
MATHEMATICA
SemiPrimeQ[n_] := PrimeOmega[n] == 2; mx = 1000; t = Table[0, {mx + 1}]; s = 0; Do[ If[ SemiPrimeQ[k], s++]; If[ SemiPrimeQ[k/2], s--]; If[s <= mx && t[[s + 1]] == 0, t[[s + 1]] = k], {k, 8*mx}]; Rest[t]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved