%I #4 Sep 16 2014 07:57:09
%S 760,1544,3200,6752,14456,31240,69976,158392,359320,812952,1829160,
%T 4143352,9440664,21556600,49120856,111398648,252748504,575187704,
%U 1311886744,2991128696,6801264184,15449413384,35134365976,80031107576
%N Number of length n+4 0..4 arrays with no disjoint pairs in any consecutive five terms having the same sum
%C Column 4 of A247404
%H R. H. Hardin, <a href="/A247400/b247400.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A247400/a247400.txt">Empirical recurrence of order 68</a>
%F Empirical recurrence of order 68 (see link above)
%e Some solutions for n=6
%e ..0....0....4....2....4....0....2....0....3....4....4....3....0....4....3....0
%e ..2....1....1....4....4....4....3....2....0....4....4....4....0....0....2....2
%e ..0....4....4....4....0....0....4....0....0....0....0....0....4....4....0....0
%e ..3....2....0....3....1....3....4....1....2....1....3....2....0....4....0....0
%e ..4....4....2....0....2....0....0....0....4....2....4....0....1....3....0....3
%e ..0....0....0....2....4....2....4....0....3....4....4....1....0....4....1....4
%e ..2....4....0....4....4....0....2....3....0....0....2....4....0....0....4....0
%e ..0....4....3....0....4....0....1....0....0....4....0....0....3....4....2....0
%e ..3....2....0....1....0....1....0....4....2....3....3....0....0....4....4....0
%e ..0....1....1....4....3....0....0....0....4....4....0....2....1....3....0....3
%K nonn
%O 1,1
%A _R. H. Hardin_, Sep 16 2014