[go: up one dir, main page]

login
A247111
Integers such that sigma(sigma(n) - n) = 2*n, where sigma is the sum of divisors, A000203.
1
6, 28, 36, 496, 8128, 33550336, 8589869056
OFFSET
1,1
COMMENTS
That is, integers such that A072869(n) = 2*n.
All perfect numbers (A000396) belong to this sequence.
Is there another term like 36 that is not perfect?
a(8) > 10^11. - Hiroaki Yamanouchi, Sep 11 2015
a(8) <= 137438691328. - David A. Corneth, Jun 04 2021
EXAMPLE
For n=36, sigma(sigma(36)-36) = sigma(91-36) = sigma(55) = 72, hence 36 is in the sequence.
MATHEMATICA
Select[Range[1, 10000], DivisorSigma[1, DivisorSigma[1, #]-#]==2*#&] (* Julien Kluge, Sep 20 2016 *)
PROG
(PARI) isok(n) = (sigma(sigma(n) - n) == 2*n);
CROSSREFS
Cf. A000203 (sigma(n)), A000396 (perfect numbers), A001065 (sigma(n)-n), A072869 (sigma(sigma(n)-n).
Cf. also A019283, A326181, A342922.
Sequence in context: A376997 A242344 A344588 * A071834 A295078 A055196
KEYWORD
nonn,more
AUTHOR
Michel Marcus, Nov 19 2014
EXTENSIONS
a(7) from Michel Marcus, Nov 22 2014
STATUS
approved