[go: up one dir, main page]

login
A246479
T(n,k)=Number of length n+3 0..k arrays with no pair in any consecutive four terms totalling exactly k
14
2, 10, 2, 60, 14, 2, 172, 132, 20, 2, 462, 484, 292, 28, 2, 966, 1734, 1376, 644, 38, 2, 1880, 4386, 6534, 3904, 1420, 52, 2, 3256, 10376, 20004, 24582, 11020, 3132, 72, 2, 5370, 20840, 57416, 91212, 92478, 31104, 6908, 100, 2, 8290, 39690, 133664, 317576
OFFSET
1,1
COMMENTS
Table starts
.2..10....60.....172......462.......966.......1880........3256.........5370
.2..14...132.....484.....1734......4386......10376.......20840........39690
.2..20...292....1376.....6534.....20004......57416......133664.......293770
.2..28...644....3904....24582.....91212.....317576......857248......2174090
.2..38..1420...11020....92478....415650....1756472.....5497304.....16089370
.2..52..3132...31104...347934...1893780....9714968....35251360....119069850
.2..72..6908...87888..1309038...8628792...53733080...226048032....881180090
.2.100.15236..248568..4924998..39320988..297195272..1449551536...6521200010
.2.138.33604..702724.18529350.179184654.1643773832..9295405128..48260338570
.2.190.74116.1985932.69713094.816514170.9091640072.59607621016.357152100490
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-4)
k=3: a(n) = 2*a(n-1) +a(n-3)
k=4: a(n) = 2*a(n-1) +a(n-3) +14*a(n-4) +3*a(n-5) +6*a(n-6) +a(n-8) +a(n-9)
k=5: a(n) = 3*a(n-1) +2*a(n-2) +3*a(n-3) +a(n-4)
k=6: [order 10]
k=7: a(n) = 5*a(n-1) +2*a(n-2) +5*a(n-3) +a(n-4)
k=8: [order 10]
k=9: a(n) = 7*a(n-1) +2*a(n-2) +7*a(n-3) +a(n-4)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=2: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=3: [order 11]
n=4: [order 13]
n=5: [order 15]
n=6: [order 17]
n=7: [order 19]
EXAMPLE
Some solutions for n=5 k=4
..0....3....0....2....2....2....3....2....2....0....4....4....0....0....1....0
..2....4....0....3....0....4....4....1....0....1....3....3....0....0....0....2
..1....3....2....0....3....4....2....0....0....0....3....3....0....3....2....1
..0....4....0....3....3....3....4....0....0....1....3....4....1....2....1....1
..0....4....1....0....3....4....4....0....1....1....3....3....0....3....1....4
..0....3....0....0....4....3....4....1....0....0....3....4....1....4....4....4
..1....3....1....2....3....3....4....0....0....1....2....4....0....3....1....1
..0....3....1....3....3....4....4....1....1....2....3....3....1....4....1....1
CROSSREFS
Sequence in context: A347096 A346239 A188635 * A359694 A171659 A060466
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 27 2014
STATUS
approved