OFFSET
1,1
COMMENTS
Let f(x) = -x^2 + b*x + b^2 be a polynomial function with b = prime(n), n >= 1, then the vertex of the graph of f(x) is at the point (vx;f(vx)) = (b/2;5*b^2/4) with f’(vx) = -2*vx + b = 0. If b = n, n >= 0, then the sequence of the vertex of this polynomial is A032527, the concentric pentagonal numbers: floor( 5*n^2 / 4). So a(n) = floor( 5*prime(n)^2 / 4), n >= 1 is a subsequence of A032527.
LINKS
Freimut Marschner, Table of n, a(n) for n = 1..1044
FORMULA
EXAMPLE
a(4) = floor(5*7^2 / 4) = floor(61.25) = 61.
MATHEMATICA
Floor[(5*Prime[Range[40]]^2)/4] (* Harvey P. Dale, Sep 15 2019 *)
PROG
(PARI)
vector(100, n, floor(5*prime(n)^2/4)) \\ Derek Orr, Sep 30 2014
(Magma) [Floor(5*NthPrime(n)^2 / 4): n in [1..40]]; // Vincenzo Librandi, Oct 21 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Freimut Marschner, Sep 28 2014
STATUS
approved