OFFSET
0,4
COMMENTS
LINKS
P. Chinn, R. Grimaldi and S. Heubach, Tiling with L's and Squares, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8
FORMULA
G.f.: 1/(1 - z - 4*t*z^2 - 2*t^2*z^3).
The trivariate g.f. with z marking length, t marking 1 X 1 tiles, and s marking L-shaped tiles is 1/(1 - t^2*z - 4*t*s*z^2 - 2*s^2*z^3).
EXAMPLE
T(2,1) = 4 because we can place the L-shaped tile in the 2*2 board in 4 positions.
Triangle starts:
1;
1;
1, 4;
1, 8, 2;
1, 12, 20;
1, 16, 54, 16;
MAPLE
G := 1/(1-z-4*t*z^2-2*t^2*z^3): Gser := simplify(series(G, z = 0, 15)): for j from 0 to 13 do P[j] := sort(coeff(Gser, z, j)) end do: for j from 0 to 13 do seq(coeff(P[j], t, i), i = 0 .. floor(2*j*(1/3))) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Aug 15 2014
STATUS
approved