Convex Polyabolos

a(n)=number of different convex
polygons that can be formed by
joining n congruent isosceles right
triangles edge-to-edge.

Illustration for *n*=1 to 20, colored according to number of sides:

Douglas J. Durian (University of Pennsylvania, Department of Physics & Astronomy)

Size	Convex Polyabolos	3-sided	4-sided	5-sided	6-sided	7-sided	8-sided
1.	1	1	0	0	0	0	0
2	3	1	2	0	0	0	0
3	2	0	2	0	0	0	0
4	6	1	5	0	0	0	0
5	3	0	2	1	0	0	0
6	7	0	5	1	1	0	0
7	5	0	3	2	0	0	0
8	11	1	9	0	1	0	0
9	5	1	2	1	1	0	0
10	10	0	5	2	3	0	0
11	7	0	2	4	1	0	0
12	14	0	11	1	2	0	0
13	7	0	2	3	2	0	0
14	16	0	6	5	4	0	1
15	11	0	4	5	1	1	0
16	20	1	13	2	4	0	0
17	9	0	3	3	2	1	0
18	17	1	7	2	6	1	0
19	13	0	2	6	5	0	0
20	22	0	11	5	5	0	1
21	12	0	4	2	5	1	0
22	25	0	5	8	10	1	1
23	18	0	3	11	2	2	0
24	27	0	19	1	6	1	0
25	14	1	2	3	6	1	1
26	24	0	5	7	8	3	1
27	20	0	4	6	8	2	0
28	31	0	12	7	10	1	1
29	18	0	2	6	7	3	0
30	36	0	10	7	14	2	3
31	26	0	3	13	7	3	0
32	37	1	17	7	10	1	1