Borel summation of a family of divergent series

Peter Bala, Dec 27 2022

Introduction

The identity

$$\sum_{n=0}^{\infty} \frac{1}{n^n} = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \dots = \int_0^1 \frac{dx}{x^x}$$
 (1)

is known humorously as the Sophomore's dream [3]. See A073009. It is the case a=b=t=1 of the more general result

$$\sum_{n=0}^{\infty} \frac{t^n}{(an+b)^{n+1}} = \int_0^1 \frac{x^{b-1}}{x^{tx^a}} dx \quad a, b \in \mathbb{Z}_{>0}.$$
 (2)

For a proof of (1) see [3]. The proof of (2) is exactly similar: write the integrand in (2) as $x^{b-1}\exp(-tx^a\log(x))=\sum_{n=0}^{\infty}(-1)^nt^nx^{na+b-1}\log^n(x)/n!$, interchange the order of summation and integration, and then make the change of variable $x=\exp(-u/(an+b))$ to evaluate the integrals.

Watson [2, Section 5] proved the following result, originally stated by Ramanujan: the Borel sum of the divergent series $1-1^1+2^2-3^3+4^4-\cdots$ is equal to $\int_1^\infty \frac{dx}{x^x} \, .$

We write Watson's result as

$$1 - 1^{1} + 2^{2} - 3^{3} + 4^{4} - 5^{5} + \dots = \int_{1}^{\infty} \frac{dx}{x^{x}} \quad (Borel).$$
 (3)

The numerical vaule of the integral is 0.7041699604.... See A245637.

The purpose of this note is to extend Watson's result and prove further Borel summability results such as

$$1^{1} - 3^{2} + 5^{3} - 7^{4} + 9^{5} - 11^{6} + \dots = \int_{1}^{\infty} \frac{dx}{x^{x^{2}}}$$
 (Borel)

and

$$2^{1} - 5^{2} + 8^{3} - 11^{4} + 14^{5} - 17^{6} + \dots = \int_{1}^{\infty} \frac{dx}{x^{x^{3}}}$$
 (Borel)

The general result (Proposition 2, below) is

$$\sum_{n=0}^{\infty} (-1)^n (an+b)^n = \int_1^{\infty} \frac{x^{a-b-1}}{x^{x^a}} \mathrm{d}x \quad \text{(Borel)} \quad a, b \in \mathbb{Z}_{\geq 0}.$$

Borel summation along \mathbb{R}^+

Let A(z) denote a formal power series

$$A(z) = \sum_{n=0}^{\infty} a(n)z^n.$$

Borel summation of A(z) (in the direction of the positive real axis) is a method of assigning a value to the series A(z), and involves three steps:

Step 1. Form the Borel transform of A defined as

$$\mathcal{B}(A(z)) = \sum_{n=0}^{\infty} \frac{a(n)}{n!} z^{n}.$$

Since the *n*-th coefficient of the series $\mathcal{B}(A(z))$ is smaller by a factor n! than the corresponding coefficient of A(z), the Borel transform $\mathcal{B}(A(z))$ may have a nonzero radius of convergence even if A(z) does not. Assuming this is the case, we may sum the series in some open disc centred at z = 0.

Step 2. Suppose further that we can analytically continue this sum on the whole of the positive real axis \mathbb{R}^+ . Denote the analytic continuation by F(z).

Step 3. Find the Laplace transform $\mathcal{L}(F)$ of F:

$$\mathcal{L}(F)(z) = \int_0^\infty F(t)e^{-tz}dt. \tag{4}$$

The existence of the improper integral requires exponential bounds on the growth of F(x) for large real x. If the integral converges at $z_0 \in \mathbb{C}$, say to $\widetilde{A}(z_0)$, we say that the Borel sum of A converges at z_0 , and write

$$\sum_{n=0}^{\infty} a(n)z_0^n = \widetilde{A}(z_0) \quad \text{(Borel)}.$$

Reversion of series

Watson's proof of (3) makes use of the identity

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n \frac{n^n}{n!} (x \exp(x))^n,$$
 (5)

whose proof uses the Lagrange inversion formula. In order to generalise this identity we need the more general Lagrange-Bürmann formula for the reversion of power series, which we state in the following form:

Let f(w) be an analytic function in a neighbourhood of 0 with f(0) = 0. Then there is a function g(w), analytic in a neighbourhood of 0, which is the inverse of f(w), that is, f(g(w)) = g(f(w)) = w. Let H(w) be an arbitrary analytic function in a neighbourhood of 0. Then the coefficients in the power series expansion of the function H(g(w)) about the point w = 0 are given by

$$[w^n] H(g(w)) = \frac{1}{n} \left[t^{n-1} \right] \left(H'(t) \left(\frac{t}{f(t)} \right)^n \right). \tag{6}$$

(The particular case of this result when H(w) = w is the Lagrange inversion formula.)

We generalise (5) as follows.

Proposition 1. Let a and b be nonnegative integers. Then

$$\frac{x^b}{1+ax^a} = \sum_{n=0}^{\infty} (-1)^n (an+b)^n \frac{(x \exp(x^a))^{an+b}}{n!}$$
 (7)

in a neighbourhood of x = 0.

Proof. We split the proof into three cases.

- (i) Case a=0 is trivial.
- (ii) Suppose b=0. We have the identity [1, formula (14)]

$$\frac{1}{1 + W(x)} = \sum_{n=0}^{\infty} (-1)^n \frac{n^n}{n!} x^n, \quad |x| < e^{-1},$$
 (8)

where the function W(x), which satisfies $W(x) \exp(W(x)) = x$, is the principal branch of Lambert's W function.

Replacing x in (8) with $W^{-1}(x) = x \exp(x)$ gives

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n \frac{n^n}{n!} (x \exp(x))^n, \quad |x \exp(x)| < e^{-1},$$

and then replacing x with ax^a yields (7) with b = 0.

(iii) Suppose now a and b are both positive integers. Let $z=x\exp{(x^a)}$. Let $H(x)=\frac{x^b}{b}$. We apply the Lagrange–Bürmann formula to find H(x) in terms of z. After a short calculation, we arrive at the result

$$\frac{x^b}{b} = \sum_{n=0}^{\infty} (-1)^n (an+b)^{n-1} \frac{z^{an+b}}{n!}.$$
 (9)

Differentiating (9) with respect to x gives

$$x^{b-1} = \sum_{n=0}^{\infty} (-1)^n (an+b)^n \frac{z^{an+b-1}}{n!} \frac{dz}{dx}$$
$$= \sum_{n=0}^{\infty} (-1)^n (an+b)^n \frac{z^{an+b}}{n!} \frac{(1+ax^a)}{x}$$

leading to the identity

$$\frac{x^b}{1+ax^a} = \sum_{n=0}^{\infty} (-1)^n (an+b)^n \frac{(x \exp(x^a))^{an+b}}{n!}$$

valid in some neighbourhood of x = 0. \square

The rational function on the left side of (7) is analytic throughout the complex plane, except for a finite number of poles, which all lie off the positive real axis since a is positive, and thus gives an analytic continuation of the series in (7) to an open set in \mathbb{C} containing $\mathbb{R}^+ \cup \{0\}$.

We now have the ingredients to find the Borel sum of the alternating divergent series $\sum_{n=0}^{\infty} (-1)^n (an+b)^n$.

Proposition 2. Let a, b be nonnegative integers. Then

$$\sum_{n=0}^{\infty} (-1)^n (an+b)^n = \int_1^{\infty} \frac{x^{a-b-1}}{x^{x^a}} dx \quad \text{(Borel)}.$$

Proof. The case a=0 is straightforward. Assume now a is a positive integer. We have

$$\begin{split} \sum_{n=0}^{\infty} (-1)^n (an+b)^n &= \sum_{n=0}^{\infty} (-1)^n \frac{(an+b)^n}{n!} \int_0^{\infty} t^n e^{-t} dt \\ &= \int_0^{\infty} \left\{ \sum_{n=0}^{\infty} (-1)^n \frac{(an+b)^n}{n!} t^n \right\} e^{-t} dt \\ &= a \int_0^{\infty} \left\{ \sum_{n=0}^{\infty} (-1)^n \frac{(an+b)^n}{n!} t^{an+b} \right\} t^{a-b-1} e^{-t^a} dt \quad (t \to t^a) \,. \end{split}$$

Since ue^{u^a} increases steadily from 0 to ∞ as u increases from 0 to ∞ , we have,

on writing ue^{u^a} for t in the last integral,

$$\begin{split} \sum_{n=0}^{\infty} (-1)^n (an+b)^n &= a \int_0^{\infty} \left\{ \sum_{n=0}^{\infty} (-1)^n \frac{(an+b)^n}{n!} \left(u e^{u^a} \right)^{an+b} \right\} u^{a-b-1} e^{(a-b-1)u^a} e^{-u^a e^{au^a}} \mathrm{d} \left(u e^{u^a} \right) \\ &= a \int_0^{\infty} \left\{ \frac{u^b}{1+au^a} \right\} u^{a-b-1} e^{(a-b-1)u^a} e^{-u^a e^{au^a}} e^{u^a} (1+au^a) \, \mathrm{d} u \\ &= a \int_0^{\infty} u^{a-1} e^{(a-b)u^a - u^a e^{au^a}} \, \mathrm{d} u \\ &= \int_1^{\infty} \frac{x^{a-b-1}}{x^{x^a}} \, \mathrm{d} x \end{split}$$

on making the change of variable $x = e^{u^a}$. \square

References

[1] R. M. Corless, D. J. Jeffrey, and D. E. Knuth

A sequence of series for the Lambert W function, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pp. 197–204.

[2] G. N. Watson,

Theorems stated by Ramanujan (VIII): , Journal of the London Mathematical Society, Volume s1-4, Issue 2, April 1929, Pages 82-86.

[3] Wikipedia,

Sophomore's dream.