[go: up one dir, main page]

login
A245397
A(n,k) is the sum of k-th powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
12
1, 1, 1, 1, 1, 3, 1, 1, 4, 10, 1, 1, 6, 27, 35, 1, 1, 10, 93, 256, 126, 1, 1, 18, 381, 2716, 3125, 462, 1, 1, 34, 1785, 36628, 127905, 46656, 1716, 1, 1, 66, 9237, 591460, 7120505, 8848236, 823543, 6435, 1, 1, 130, 51033, 11007556, 495872505, 2443835736, 844691407, 16777216, 24310
OFFSET
0,6
LINKS
FORMULA
A(n,k) = [x^n] (n!)^k * (Sum_{j=0..n} x^j/(j!)^k)^n.
EXAMPLE
A(3,2) = 93: (z1+z2+z3)^3 = z1^3 +3*z1^2*z2 +3*z1^2*z3 +3*z1*z2^2 +6*z1*z2*z3 +3*z1*z3^2 +z2^3 +3*z2^2*z3 +3*z2*z3^2 +z3^3 => 1^2+3^2+3^2+3^2+6^2+3^2+1^2+3^2+3^2+1^2 = 93.
Square array A(n,k) begins:
0 : 1, 1, 1, 1, 1, 1, ...
1 : 1, 1, 1, 1, 1, 1, ...
2 : 3, 4, 6, 10, 18, 34, ...
3 : 10, 27, 93, 381, 1785, 9237, ...
4 : 35, 256, 2716, 36628, 591460, 11007556, ...
5 : 126, 3125, 127905, 7120505, 495872505, 41262262505, ...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1, k)*binomial(n, j)^k, j=0..n))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1, k] * Binomial[n, j]^(k-1)/j!, {j, 0, n}]]]; A[n_, k_] := n!*b[n, n, k]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A001700(n-1) for n>0, A000312, A033935, A055733, A055740, A246240, A246241, A246242, A246243, A246244, A246245.
Rows n=0+1, 2 give: A000012, A052548.
Main diagonal gives A245398.
Sequence in context: A342447 A025255 A296006 * A346792 A294316 A294761
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 21 2014
STATUS
approved