[go: up one dir, main page]

login
A245303
Product of a prime and a power (exponent at least 2, base at least 1).
4
2, 3, 5, 7, 8, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131
OFFSET
1,1
COMMENTS
Numbers of the form p*m^r where p prime, m > 0 and r > 1.
LINKS
EXAMPLE
72 is in this sequence because 72 = 2*36 = A000040(1)*A001597(9).
108 is in this sequence because 108 = 3*36 = A000040(2)*A001597(9).
MAPLE
filter:= proc(n) local E, ne, i, j;
if isprime(n) then return true fi;
E:= map(t->t[2], ifactors(n)[2]);
ne:= nops(E);
for j from 1 to ne do
if igcd(seq(`if`(i=j, E[i]-1, E[i]), i=1..ne)) > 1 then return true fi;
od;
false
end proc:
filter(1):= false:
select(filter, [$1..1000]); # Robert Israel, Aug 11 2014
PROG
(PARI) ispp(n) = (n==1) || ispower(n);
isok(n) = {my(f = factor(n)); for (i=1, #f~, p = f[i, 1]; if (ispp(n/p), return(1)); ); return (0); } \\ Michel Marcus, Aug 08 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved