[go: up one dir, main page]

login
A245295
Decimal expansion of the Landau-Kolmogorov constant C(4,3) for derivatives in the case L_infinity(infinity, infinity).
0
1, 4, 8, 0, 1, 6, 5, 6, 0, 8, 9, 8, 4, 5, 7, 0, 5, 0, 1, 1, 3, 3, 5, 7, 9, 9, 3, 2, 3, 2, 7, 6, 7, 3, 6, 3, 8, 5, 9, 8, 1, 2, 3, 5, 8, 2, 6, 1, 2, 3, 7, 6, 2, 3, 6, 6, 4, 9, 7, 2, 4, 8, 1, 1, 8, 3, 1, 4, 9, 3, 3, 7, 3, 1, 5, 9, 9, 2, 3, 0, 5, 2, 4, 0, 8, 8, 8, 3, 9, 0, 3, 8, 0, 3, 7, 6, 7, 9, 7, 3, 4, 5, 1, 4, 9
OFFSET
1,2
COMMENTS
See A245198.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.
LINKS
Eric Weisstein's MathWorld, Landau-Kolmogorov Constants
Eric Weisstein's MathWorld, Favard Constants
FORMULA
C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(4,3) = (3/5)^(1/4)*2^(3/4) = (24/5)^(1/4).
EXAMPLE
1.480165608984570501133579932327673638598123582612376236649724811831493373...
MATHEMATICA
a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[4, 3], 10, 105] // First
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved