[go: up one dir, main page]

login
A244289
Numbers n such that floor( n^(3/2) ) is a concatenation of two successive numbers.
0
20, 120, 132, 325, 2213, 4544, 5911, 7071, 7889, 8046, 8297, 9819, 59658, 60772, 64002, 71483, 80717, 95846, 101555, 104195, 109579, 113393, 119894, 130485, 142010, 152556, 152829, 159994, 166038, 168012, 191190, 193622, 201631, 205929, 1098933, 1106171
OFFSET
1,1
EXAMPLE
132 is in the sequence because floor(132^(3/2)) = floor(1516.5645...) = 1516 is the concatenation of 15 and 16.
MATHEMATICA
lst={}; Do[If[EvenQ[y=Length[x=IntegerDigits[Floor[n^1.5]]]]&&Differences[FromDigits/@Partition[x, y/2]]=={1}, AppendTo[lst, n]], {n, 5*10^4}]; lst
CROSSREFS
Cf. A030467.
Sequence in context: A258667 A357042 A299965 * A293880 A121040 A044352
KEYWORD
nonn,base,less
AUTHOR
Michel Lagneau, Jun 27 2014
STATUS
approved