[go: up one dir, main page]

login
A244285
Decimal expansion of A1*B1, the average number of non-isomorphic semisimple rings of any order, where A1 is Product_{m>1} zeta(m) and B1 is Product_{r*m^2 > 1} zeta(r*m^2).
3
2, 4, 9, 9, 6, 1, 6, 1, 1, 2, 9, 3, 6, 2, 9, 8, 2, 7, 4, 9, 3, 2, 3, 7, 3, 8, 2, 1, 7, 5, 6, 4, 9, 8, 0, 3, 4, 5, 7, 0, 4, 0, 2, 2, 5, 8, 8, 0, 7, 5, 9, 5, 4, 4, 3, 2, 0, 6, 2, 1, 0, 9, 4, 8, 1, 2, 1, 2, 2, 4, 3, 6, 8, 1, 6, 9, 6, 5, 1, 3, 6, 4, 7, 2, 6, 8, 8, 6, 3, 3, 6, 4, 3, 0, 9, 7, 5, 3, 6, 2, 8, 7, 2, 2, 6
OFFSET
1,1
COMMENTS
The asymptotic mean of A038538. - Amiram Eldar, Jan 31 2024
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.
EXAMPLE
2.499616112936298274932373821756498034570402258807595443206210948121224368...
MAPLE
Digits := 200: z:=product(Zeta(1.0*j), j = 2..1000): for k from 10 by 10 to 50 do print(z*product(product(Zeta(1.0*r*m^2), r = 1..k^2), m = 2..k)); end do; # Vaclav Kotesovec, Jun 11 2020
MATHEMATICA
digits = 20; digitsPlus = 100; n0 = 50; dn = 1; A1 = NProduct[Zeta[m], {m, 2, Infinity}, WorkingPrecision -> digitsPlus]; Clear[B1]; B1[n_] := B1[n] = NProduct[Zeta[r*m^2], {r, 1, n}, {m, 2, n}, WorkingPrecision -> digitsPlus]; B1[n0]; B1[n = n0 + dn]; While[ RealDigits[B1[n], 10, digitsPlus] != RealDigits[B1[n - dn], 10, digitsPlus], Print["n = ", n]; n = n + dn]; RealDigits[A1*B1[n], 10, digits] // First
PROG
(PARI) prodinf(m = 2, zeta(m)) * prodinf(r = 1, prodinf(m = 2, zeta(r*m^2))) \\ Amiram Eldar, Jan 31 2024
CROSSREFS
Cf. A021002 (A1), A038538, A123030.
Sequence in context: A163299 A337911 A198679 * A111422 A279035 A076661
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 11 2020
STATUS
approved