[go: up one dir, main page]

login
A243523
Decimal expansion of the expectation of the maximum of a size 6 sample from a normal (0,1) distribution.
3
1, 2, 6, 7, 2, 0, 6, 3, 6, 0, 6, 1, 1, 4, 7, 1, 2, 9, 7, 6, 4, 9, 3, 4, 8, 8, 8, 1, 8, 6, 3, 9, 9, 4, 4, 4, 2, 6, 9, 3, 6, 5, 0, 1, 9, 1, 8, 5, 2, 4, 3, 5, 7, 4, 8, 9, 4, 6, 1, 7, 5, 7, 0, 6, 9, 7, 2, 8, 4, 5, 0, 9, 4, 9, 7, 0, 0, 9, 2, 9, 9, 6, 3, 8, 3, 6, 2, 7, 2, 4, 7, 3, 6, 9, 7, 8, 9, 6, 5, 1
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.
FORMULA
(15*(Pi*(Pi-4*arccsc(sqrt(3))) + 2*integral_(x=0..arccsc(sqrt(3)))(arcsin(sqrt(3)*sqrt(1/(8-tan(x)^2))))))/(2*Pi^(5/2)).
EXAMPLE
1.26720636061147129764934888186399444269365...
MATHEMATICA
digits=100; mu[6] = (15*(Pi*(Pi - 4*ArcCsc[Sqrt[3]]) + 2*NIntegrate[ ArcSin[Sqrt[3]*Sqrt[1/(8 - Tan[x]^2)]], {x, 0, ArcCsc[Sqrt[3]]}, WorkingPrecision -> digits + 5]))/(2* Pi^(5/2)) ; RealDigits[mu[6], 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved